当前位置:百纳范文网>专题范文 > 教案设计 > 反比例函数,教案(五篇)【精选推荐】

反比例函数,教案(五篇)【精选推荐】

时间:2023-05-26 19:10:12 来源:网友投稿

下面是小编为大家整理的反比例函数,教案(五篇)【精选推荐】,供大家参考。

反比例函数,教案(五篇)【精选推荐】

作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?又该怎么写呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。

反比例函数 教案篇一

本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观

体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

掌握从实际问题中建构反比例函数模型。

从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教学方法

启发引导、合作探究

教学媒体

课件

(一)创设问题情境,引入新课

[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用。

[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

反比例函数 教案篇二

教学目标:

1、通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例

2、培养学生的逻辑思维能力

3、感知生活中的数学知识

重点难点1.通过具体问题认识反比例的量。

2、掌握成反比例的量的变化规律及其 特征

教学难点:

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程:

一、课前预习

预习24---26页内容

1、什么是成反比例的量?你是怎么理解的?

2、情境一中的两个表中量变化关系相同吗?

3、三个情境中的两个量哪些是成反比例的量?为什么?

二、展示与交流

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律

情境(一)

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;
乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考

同桌交流,用自己的语言表达

写出关系式:速度×时间=路程(一定)

观察思考并用自己的语言描述变化关系乘积(路程)一定

情境(三)

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系

写出关系式:每杯果汁量×杯数=果汗总量(一定)

5、以上两个情境中有什么共同点?

反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

活动四:想一想

二、 反馈与检测

1、判断下面每题是否成反比例

(1)出油率一定,香油的质量与芝麻的质量。

(2)三角形的面积一定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积一定,底面积和高。

(6)小林做10道数学题,已做的题和没有做的题。

(7)长方形的长一定,面积和宽。

(8)平行四边形面积一定,底和高。

2、教材“练一练”p33第1题。

3、教材“练一练”p33第2题。

4、找一找生活中成反比例的例子,并与同伴交流。

反比例函数 教案篇三

教学目标:

1、理解反比例的意义。

2、能根据反比例的意义,正确判断两种量是否成反比例。

3、培养学生的抽象概括能力和判断推理能力。

教学重点:

引导学生理解反比例的意义。

教学难点:

利用反比例的意义,正确判断两种量是否成反比例。

教学过程:

一、复习铺垫

1、成正比例的量有什么特征?

2、下表中的两种量是不是成正比例?为什么?

二、自主探究

(一)教学例1

1、出示例1,提出观察思考要求:

从表中你发现了什么?这个表同复习的表相比,有什么不同?

(1)表中的两种量是每小时加工的数量和所需的加工时间。

教师板书:每小时加工数和加工时间

(2)每小时加工的数量扩大,所需的加工时间反而缩小;
每小时加工的数量缩小,所需的加工时间反而扩大。

教师追问:这是两种相关联的量吗?为什么?

(3)每两个相对应的数的乘积都是600.

2、这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?

教师板书:零件总数

每小时加工数×加工时间=零件总数

3、小结

通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。

(二)教学例2

1、出示例2,根据题意,学生口述填表。

2、教师提问:

(1)表中有哪两种量?是相关联的量吗?

教师板书:每本张数和装订本数

(2)装订的本数是怎样随着每本的张数变化的?

(3)表中的两种量有什么变化规律?

(三)比较例1和例2,概括反比例的意义。

1、请你比较例1和例2,它们有什么相同点?

(1)都有两种相关联的量。

(2)都是一种量变化,另一种量也随着变化。

(3)都是两种量中相对应的两个数的积一定。

2、教师小结

像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。

3、如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?

教师板书:
xy =k(一定)

三、课堂小结

1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。

2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?

四、课堂练习

完成教材43页做一做

五、课后作业

练习七6、7、8、9题。

六、板书设计

成反比例的量 xy=k(一定)

每小时加工数×加工时间=零件总数(一定)

每本页数×装订本数=纸的总页数(一定)

反比例函数 教案篇四

使学生对反比例函数和反比 例函数的图象意义加深理解。

反比例函数 的应用

一、新授:

1、实例1:(1)用含s的代数式 表示p,p是 s的反比例函数吗?为什么?

答:p=600s (s0),p 是s的反比例函数。

(2)、当木板面积为0.2 m2时,压强是多少?

答:p=3000pa

(3)、如果要求压强不超过6000pa,木板的面积至少 要多少?

答:2。

(4)、在直角坐标系中,作出相应的函数 图象。

(5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。

二、做一做

1、(1)蓄电池的电 压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8 所示。

(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?

电压u=36v , i=60k

2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10a,那么用电器的可变电阻应控制在什么范围内?

r() 3 4 5 6 7 8 9 10

i(a )

3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于a、b两点,其中点a的坐标为(3 ,23 )

(1)分别写出这两个函 数的表达式;

(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;

随堂练习:

p145~146 1、2、3、4、5

作业:p146 习题5.4 1、2

反比例函数 教案篇五

教学目标

(一)教学知识

1、从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解。

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

(二)能力训练要求

结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。

(三)情感与价值观要求

结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;
同时体验数学活动与人类生活的密切联系及对人类历史发展的作用。

教学重点

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

教学难点

领会反比例函数的意义,理解反比例函数的概念。

教学方法

教师引导学生进行归纳。

教具准备

投影片两张

第一张:(记作§5.1a)

第二张:(记作§5.1b)

教学过程

ⅰ。创设问题情境,引入新课

[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数。但是在现实生活中,并不是只有这两种类型的表达式。如从a地到b地的路程为1200km,某人开车要从a地到b地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘。

推荐访问:反比例 教案 函数 反比例函数 教案(五篇) 反比例函数优秀教案

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

Copyright©2012-2024 百纳范文网版权所有 备案号:鲁ICP备12014506号-1