数学与应用数学专业毕业论文1 论文题目:数学教学中的德育渗透 摘要:我们如何更好地结合学科特点在数学教学中进行德育教育?本文将从实施德育渗透的内容、要求、方法、原则及应注意的问题五个方面阐述如何下面是小编为大家整理的2023年数学与应用数学专业毕业论文,菁选3篇,供大家参考。
数学与应用数学专业毕业论文1
论文题目:数学教学中的德育渗透
摘要:我们如何更好地结合学科特点在数学教学中进行德育教育?本文将从实施德育渗透的内容、要求、方法、原则及应注意的问题五个方面阐述如何在数学教学中渗透德育教育。 利用数学史对学生进行爱国主义教育。结合数学实际对学生进行辩证唯物主义教育、对学生进行人生价值观的教育、利用数学美对学生审美教育、贯彻素质教育原则。深入钻研教材、挖掘德育因素、德育渗透要适时适度。
关键词:数学教学 德育 渗透
1 数学中蕴含的德育内容
1.1理想教育
数学源于实际,且随着生产力的发展而发展。华罗庚说:“宇宙之大,粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁无处不用数学。”结合数学教学内容使学生了解数学知识在现代化建设和科技发展中的巨大作用,必将激发他们学好数学,以报效祖国的情感使学生了解科技的突飞猛进对数学工具的更高要求,而有待后人不断探索创新的事实,必将增强学生的使命感,将现实和理想结合起来。发奋学习这样可为学生树立革命人生观打下坚实的基础。像陈景润,他攀登“哥德巴赫猜想”这一科学高峰的艰险历程中,为了理想,为了科学,以契而不舍,坚忍不拔的毅力,在不足十*方米的斗室中,埋头苦干,常常为了一个公式,一个数据而废寝忘食,终于在1972年把人们200多年未能解决的“哥德巴赫猜想”证明大大的向前推进了一步。这些名人的感人事迹无疑会让学生受到极大的感染,以此激励、教育学生像这些楷模学习,树立远大的理想[2]。
1.2 利用数学史对学生进行爱国主义教育
我国历史悠久,有光辉灿烂的文化史、数学史。商高定理(勾股定理)、祖恒原理、杨辉三角、《周髀算经》,《九章算术》……是传统数学的宝贵财富。历史名人举世瞩目,仅公元前三世纪的刘徽一人就赢得了多项世界之最:他最早提出分数除法法则,给最小公倍数以严格定义、应用小数、提出非*方数的近似值公式,给出负数定义和负数加法法则,把比例和“三数法则”结合起来,给出一次方程定义和完整解法,提出割圆术、把圆周率计算到3。1416,用无穷分割证明了方锥的体积公式,创造“重差术”(即测量可望不可及目标的一种方法)现在虽时过境迁,但割圆术仍不失为极限这一费解概念极好的几何解释。刘徽的辉煌成就不时的在教材、习题中闪光,结合于教学必将激发学生民族自尊心、自豪感和爱国热情。
诚然,由于长期的封建统治、闭关锁国和帝国主义列强的侵略,近代我国数学曾一度萧条、落后,但新*成立带来了科学的春天。著名数学家陈景润、华罗庚、苏步青、陈省身等,他们在各自领域都做出了突出贡献,在国际上享有极高的声誉。他们的辉煌业绩和爱国主义精神,是中华民族的骄傲。他们的足迹在数学教材中的再现,必将为后人敬仰,是生动的爱国主义教材。
1.3结合数学实际对学生进行辩证唯物主义教育
*指出:“数学是辨证的辅助工具和表现形式,连初等数学也充满着矛盾。”数学是研究现实世界数量关系和空间形式的科学,客观世界遵循不以人的意志为转移的规律运动、变化、发展,故反映其数量关系和空间形式的数学处处充满着唯物论和辩证法。同时在漫长的数学知识发展的过程中,人们积累了一整套科学规律和处理问题的方法,这些数学思想方法是辩证唯物主义的立论基础和科学证明。如正负整数,正负分数对立统一于有理数,有理数无理数对立统一于实数,实数和虚数对立统一于复数;引入负数后、加减法对立统一于加法,引入分数后、乘除法对立统一于乘法,引入分数指数后、乘方和开方对立统一于乘方;而函数、轨迹、数形结合、化归换元又是运动、变化、联系转化思想的体现。
数学教师不仅是数学知识的传授者,也是辩证唯物主义的传播者。如圆的定义为*面内到定点距离等于定长的点的轨迹。即圆为*面内一点运动变化且遵循一定规律(和定点保持定长) 运动时所留下的痕迹。教学时经上述分析、不仅给学生静圆以动感,而且使学生认识到运动变化是有章可循的。这样有助于*、变化、联系等观点的形成。在数学教学中进行辩证唯物主义教育,可为学生树立科学的世界观和方法论奠定良好基础。
1.4对学生进行人生价值观的教育
数学是逻辑性最强的科学,通过对定理、法则的严格推导,可培养学生实事求是、言必有据、正直讲理的思想品质;结合学生作业错误,从反面领会数学的严密性,从而逐步树立一丝不苟、严肃认真的科学作风;对一些综合题、复杂题的分层推演又可培养学生不怕困难、坚韧不拔的毅力;而一题多解、一题多变又可以培养学生创造性,激发学生不断探索、勇于创新的变革精神……,这些有利于培养学生良好的个性品质,发展学生特长,对学生进行人生价值观的教育十分有益。
1.5利用数学美对学生审美教育
数学并不是一门枯燥乏味的学科,它实际包含着许多美学因素。古代哲学家、数学家早就断言:“哪里有数,哪里就有美。”数学美的特征表现在和谐、对称、秩序、统一等方面[4]。数学源于自然,大自然的美妙不难在数学中找到其“缩影”,如对称美、和谐美;同时由于数学自身的特点,又使它放射出简洁美、精确美、统一美、奇异美、开放美的异彩。数学是一门既真又美的科学,不但拥有真理,而且具有至高的美[5]。 数学教学要注意挖掘和发现数学本身的美, 让学生认识到数学并不是枯燥的公式和繁杂的图形, 而是一种科学美。数学中的许多定理、公式、论证过程, 解题中最简方法等都体现了数学简洁美。数学中函数图象的对称、圆锥曲线的点对称和线对称, 著名的杨辉三角形中的对称等充分体现了数学的对称美。数学中代数、几何的互相渗透, 数与形结合的思维方式及数学中一些特殊解法等都体现了数学的奇异美。又如立体几何中辛森公式v=1/6h(S1+4S0+S2)把柱、锥、台和球的体积公式统一在一起, 解析几何中圆锥曲线的统一定义和统一极坐标方程等反映了数学的和谐美。曾经有一位数学家说过:“数学教学的目的之一应当使学生获得对数学的审美能力[6]。”因此在教学中, 要有意识的培养学生的数学美感, 引导他们去发现美、鉴赏美, 从而提高审美能力, 陶冶美的情操。
2 实施德育渗透的要求
在数学教学中渗透德育是寓德育于智育之中,要将德育目标与数学教学内容所具有的德育因素有机结合起来,组成合理的科学的教学结构,通过教师有目的有意识地教学活动,使德育内容在教学中潜移默化地影响学生,逐步内化为学生的思想品德。为此对教师提出下列相应要求。
2.1 贯彻素质教育原则
强化德育意识:数学教师是教师队伍中一支强大的力量,承担着为现代化建设培养高素质人材的重任。实施素质教育就是促进德智体美劳全面发展,而思想品德在学生素质中占据着重要地位,所以应在“把德育放在首位”中发挥教师的主导作用。然而数学教育不存在法制教育的某种强制性,也不具有道德教育的某种约束性,要寓德育于智育之中,必须在“寓”字上下功夫、作文章,研究寓的艺术,寓得自然,合情合理,使学生,乐于接受,易于生效。
2.2深入钻研教材,挖掘德育因素
数学的德育因素很多,但它不像政治课那样外露,多蕴含于数学教材的深处,教师必须深入钻研教材,掌握其科学体系、把握其结构联系,从中挖掘出德育因素,并前后照应,理清脉络。如经过钻研,圆锥曲线一章德育内容确定如下:
2.2.1 结合圆锥曲线轨迹定义教学,培养*变化观点,反对形而上学。
2.2.2 结合圆锥曲线统一定义教学,对学生进行对立统一,量变质变规律教育。
2.2.3 通过圆锥曲线知识应用教学,培养学生理论联系实际的学风,教育学生认真学习,将来为现代化建设贡献力量。
2.2.4 结合圆锥曲线标准方程对学生进行审美教育。
2.3 德育渗透要适时适度
德育渗透伴随教学活动进行,而其中的主渠道是课堂教学。教师备课时,既要备教学目的要求,又要据知识的具体内容、学生心理生理特点确定德育目标,并明确什么时候、哪个环节渗透什么样的德育内容及渗透的程度;上课时既要注意知识性、科学性,又重视知识中的思想性,将两者自然有机地结合起来,使学生在接受知识、形成技能技巧的过程中受到教育。如在复习圆锥曲线内容时,由椭圆、双曲线第一定义,抛物线定义以及它们的标准方程、性质,明确它们是不同的是对立的;然而通过椭圆、双曲线第二定义总结椭圆、双曲线、抛物线统一定义(*面内到定点和定直线距离之比为e的点和轨迹) 因它们都是*面和圆锥面的截线而统称为圆锥曲线,共处于一个统一体中,这些无疑给学生对立统一规律教育;分析离心率(e=0时为圆、o1时为双曲线)[7],又是对学生进行量变质变规律教育和辩证唯物主义教育的好教材。
丰富多彩的课外活动,既是智育的广阔天地,也德育渗透的用武之地。包括教师的言传身教,对学生也是一种潜移默化的感染和教育。如朴素大方整洁庄雅的衣着,科学干练、井然有序、抑扬顿挫而又富启发性的教学语言,层次分明、清洁工整、潇洒流畅的板书,和蔼庄重而又寓于变化的教态,精美别致、直观形象的教具……,都能使学生赏心悦目、情感共鸣而德智双收。因此在这些方面也对教师有相应的要求。
3 德育渗透的原则
为收到教书育人的双重功效,德育渗透应遵循以下原则:
3.1科学性原则
数学教学为形成学生科学的世界观和良好的道德品质提供了坚实的基础。学习数学需要正确的动机和科学的思维方法,遵循认识论的规律。因此,德育渗透要符合马克思主义的科学性原理,符合学生的认知规律,注意数学课的本质特征,把握德育渗透的适度、力度、结合度,才能收到良好的教育效果。
3.2渗透性原则
教学中要将智育和德育融为一体,防止牵强附会,贴政治标签。要找好德育渗透的切入点,抓住道德的基本点,由此深入、辐射,才能收效要根据数学教学的特点将德育与教材内容有机结合,相互渗透,达到课堂教学融知识性、思想性于一体的最高境界。
3.3系统性原则
科学世界观和良好的道德品质的形成要经历一个耳濡目染、潜移默化的渐变过程,要根据每学期的教学内容和德育目标制定德育计划,长期地熏陶、渗透,才能水到渠成,收到成效。
3.4量力性原则
数学教学中的德育,必须根据学生的心理和生理特征,认知基础和思维发展水*,确定符合学生实际的目标,有目的、有计划、循序渐进地进行。学生能力的提高,思想品德的形成,总是因人而异,不可能是同一模式,因此,在保证共同施教达到统一要求的前提下,还要照顾不同学生的层次特点,注意个别教育与共同教育相结合。
3.5情感性原则
数学教学中德育讲究艺术性,充分发挥情感效应在师生交往中,建立一种*等、民主、亲切、和谐的师生关系。如果教师在课内外均以教育者自居,表情严肃,态度严厉,学生就会产生压抑感和约束感,甚至会造成心理障碍,日积月累就会对教师敬而远之,这时的教育自然是低效甚至无效。反之,尊重学生,真诚地关心和理解学生,对学生严格要求,耐心帮助,一视同仁,就会使学生在一种轻松、愉快的气氛中接受知识,领悟道理,在感情交融的情境中获得启迪,在不知不觉中受到熏陶和感染。这就要求教师充分重视学生的情感,要通过自己的情感有意识地激发学生积极性的情感体验,从而有效的渗透德育[8]。
3.6持之以恒原则
革命人生观、科学世界观的建立,良好思想品德的形成不是一朝一夕所能完成的。“十年育树,百年树人”道出了育人工程的长远性、艰巨性[9]。一个人思想的转变是一个循序渐进的过程,是一个量变质变的过程,我们只有不懈努力,学生政治思想素质才能逐步提高。
3.7与时俱进原则
数学的科学体系在不断发展,学生的心理品质不断变化,社会对学生的德育要求也将随着社会的发展不断变化,因此在数学教学中渗透德育的内容、途径等也必须与时俱进,跟上时代的步伐,因此要不断探索,不断创新。
4 德育渗透的基本方法
4.1同向渗透
即在教学中随着知识内容的展开而渗透德育内容。德育的内容与知识的传授是同步的,这种方法能把渗透的内容与数学知识有机的融合在一起,细流潺潺,水到渠成。
4.2阶段渗透
即在课堂小结时,通过巧妙的点拨融入的德育内容。这种方法能精确恰当地突出知识点和渗透主要内容画龙点睛,言微义中、起到一石激起千层浪的作用。
4.3哲理渗透
即通过具体习题的分析,晓知辩证法的道理,数学中充满了辨证法,正和负、奇和偶,正弦和余弦,乘方和开方等等,都是活生生的例子。数学也应采用辨证的方法,诸如引导学生认识一题多解与多题归一问题,引导学生理解相互对立有相互统一的概念间的关系,点拨学生全面的分析习题等,都是大有益处的,这就是哲理渗透通过这样的教学,学生就能养成全面分析问题,辨证思考问题的良好习惯,进而树立科学的世界观。
4.4自我渗透
即引导学生独立思索,使之从中悟出道理,达到自我教育的目的。在教学中要经常让学生独立分析,独立思考,找出习题之间的相互联系和区别,以总体上把握习题的类别。另一方面要让学生认真分析习题的特点,显示已知条件进而思索探求结果的途径,最后找出其中的规律。这样学生就能够由此及彼地归纳问题,学会用典型掌握类别的方法推而广之,用到自己的生活中去。我们常说的以学生为主体,以教师为主导其意义就在于此。
5 实施中应重视的两个问题
5.1寓德育于数学教学中的关键是教师
发挥教师在数学教学中体现的人格魅力[10] 。教师应面向新世纪,充分认识数学教学中渗透德育的深远意义,转变思想,更新观念,真正将每节课的德育目标落到实处,明确自己的职责是教书育人。“学高为师,身正为范”,教师的举止言行,学生都在细心观察,甚至效仿。教师通过讲授的科学性、思想性,严谨的治学态度、负责始终的教风、诙谐幽默的语言感染着学生,激励他们以坚韧不拨的顽强精神,向理想目标迈进。因此,数学教师要不断提高自身修养,除了精通自己所教的知识,还要有一定的数学史知识和数学思想方面的知识,能把握道德数学教学的脉络,理出思想教育的层次,探索一些具体的德育方法。这就要求教师以全面提高学生素质、培养新一代为已任,树立新的教学观、学生观、质量观,准确把握学生所思、所求、所感、所爱,有的放矢地教育,才能收到实效。
5.2着眼课内,放眼课外
学生个体品德心理的形成,是内部条件和外部条件相互作用的结果,实践性活动是实现这种相互作用的具体过程。教学中要着眼课内,放眼课外,课内长期渗透,课外集中拓宽,才能促进学生把数学学习与崇高的理想结合起来,使学生兴趣化为更大的求知内驱力,进而深化德育效果。丰富多彩的课外数学活动,是课内教学的延伸,又是德育的生动的大课堂,以此扩大学生的知识视野,提高学生整体素养,促进学生个性自由发展。
参考文献
[1] 周庆*.论数学教学中的德育渗透[J].华北煤炭医学院学报,2005,7(4):531-532.
[2] 张二艳.浅谈*高校数学教学中的德育渗透[J].河北*教育,1999,6:21.
[3] 罗寿果.浅谈数学教学中的德育渗透[J].山东教育学院学报,1998,(2):100-101.
[4] 张建淳.新课表数学教学中的德育渗透[J].科技文汇,2006,8:55.
[5] 樊美林.数学教学中的德育渗透[J].教育导报,2007,(2):1-2.
[6] 翟素琴.数学教学中的德育渗透[J].安徽教育,1997,(10):33.
[7] 郑七星.数学教学中的德育渗透[J].机械职业教育,1997,(2):13-14.
[8] 郭勇,刘衍玲.浅谈数学教学中的德育渗透[J].*德育,2006,1(11):16-17.
[9] 梁金龙.数学教学中的德育渗透[J].保定师范专科学校学报,2002,15(4):56-58.
[10]王启民.中学数学教学中的德育渗透[J].甘肃日报,2004,9(29):133-134.
数学与应用数学专业毕业论文2
论文题目:七年级学生数学解题能力的培养
摘 要:学生数学解题能力是数学知识在更高层次上的抽象与概括,单纯的数学知识只能是学生的知识积累,而数学解题能力的培养是一种授之以渔的过程。七年级学生从小学单纯的数字计算到初中代数的引入,以及几何知识的扩展,他们掌握数学知识的广度和深度都有了不同程度的增加,因此培养学生的解题能力是必不可少的教学环节。教师在课堂中应重视数学思想方法的教学,加强学生数学解题的规范性,不断归纳总结,增强解题效果。学生在解题时会从不同角度考虑和分析问题,学会一题多解、一题多变、一题多得,从而巩固了所学知识。解题能力的培养对发展学生创造性思维能力具有重要意义。
关键词:七年级;数学题;解题能力;创造性思维
第一章 七年级学生解题能力培养的意义
七年级数学是初中学习中关键的基础,它不仅是小学和初中数学知识衔接的重要阶段,更是学生获得知识,同时更是思维能力、情感态度与价值观方面得到进步和发展的时期,所以了解七年级数学的学习特点是很重要的。
七年级数学是在小学数学知识的基础上进行拓展和延伸的。难度比较适中,宽度有所加大。它与小学数学的最大的不同点是七年级数学的概念有显著的增加。对于小学的概念读懂就可以了,而七年级的数学概念需要牢牢记住和掌握,在学习的过程中须有一种敢于挑战的精神,抓住知识的本质,细抠所学内容,在理解的基础上掌握概念、运用概念,这写方法贯穿中学数学学习的始终。
小学数学的计算与中学比较相对简单,中学数学的计算比较繁杂。想要学好中学数学知识必须培养准确而迅速的计算习惯。首先需要对所学的概念和定义深层的理解和熟练的掌握,其次还需要在做题的过程中专心的审题和细致检查,严格要求自己不能在基本的计算上粗心而出错误,并以此为考试成绩不高找借口,养成凡事认真仔细的习惯。
在小学知识与学习习惯的基础上,培养自己独立完成习题并且敢于克服难题的能力。中学的学习到类似于小学奥数一样的难题,一定要发扬敢于接受挑战的精神,在习题的过程中养成一中也会遇题多解、多题一解、一题多变的习惯,注重培养发散思维与做题技巧。
因此在小学升入七年的数学学习中,培养较好的解题能力是学好中学数学知识的关键,是为以后的数学学习打下牢靠基础的保证。
第二章 培养数学解题能力的方法
2.1重视基本概念和基础知识的掌握
数学中的定义、公式、定理、命题等,是解题的依据,对于这些基本概念和基础知识,教师教学时不应忽视,并能熟练地将不仅要讲解来龙去脉,还要指导学生透过表面抓住本质,其应用。
对书中基本概念、基本知识的熟练掌握是提高做题能力的必须。对于刚步入初中的学生来说,中学概念的大量增加是一个较大的挑战,所以教师要注重培养学生对基本概念和基础知识的掌握,严格要求学生牢记定义,概念。在上课,要反复回顾这节课的概念、定义;下课后,布置关于基本概念的习题,在做题的过程中,学生就会应用学过的概念去做题,通过不断的训练,来加强基本概念的记忆与理解。
2.2培养学生审题的能力
七年级学生解数学题时,普遍存在着见题就解的习惯。当遇见条件明显的题时,这种现象尤为显著。这是提高学生解题能力的一大障碍。为改正这种不良习惯,教师需要通过详细分析题意,找出简捷易懂的解题方法,让学生体会到仔细审题的优越之处,逐步形成分析题目的习惯,从而提高学生的解题能力。
在解数学应用题时,要做到三点:“一读、二画、三复述”。
读题是审题教学的第一步。指导学生用默读方式,一边读,一边思考。在教学过程中要逐步提高学生的读题能力,先要求学生逐字逐句地读,以后要求学生连贯地读,关键词语要加重语气读。
然而会读题并不等于理解题意。为了使学生更好地理解题意,可以指导学生画画点点,画上各种符号。一般用双竖线“||”把应用题的条件与问题分开,用横线“—”把已知条件断开,用着重点“ ”表示关键词。
复述题意是为了检验学生是否真正弄懂题目的意思。对学生复述题意的训练,可以逐步使学生养成认真审题的良好习惯,同时也可以培养学生的数学语言表达能力以及理解和记忆能力。然而审题能力的培养在应用题教学中表现得尤为重要。教学实践证明,学生解答不出应用题,主要的困难在于对题意不理解。“理解了题意,等于题目做出了一半”。但是学生往往对审题拘于形式,拿到题目就把题中数字进行简单组合,导致错误。应用题的难度是在找出问题中所蕴涵的数学关系。所以首先要加强学生“说”的培养,理解题意。对于有些叙述较为抽象、冗长的应用题,可引导学生将题目的叙述进行简化,即说出应用题的已知条件和问题。其次要加强关键词句的观察,理解题意。有时候仅一字之差,题目的数量关系就发生变化了,进而解法也有很大的差异。
2.3通过变式训练提高学生解题能力
学生的做题技巧是基本计算之上才会有的,所以要把基本计算练好。但是大量的基本计算训练容易僵化学生的思维,不利于创新能力的.培养,因此要科学地运用变式来提高解题能力,通过变式来改变题目的条件或结论,找出已知条件与问题之间的联系,能够使学生把握题中不变的东西,熟悉做题的技巧,同时也培养了学生联想、转化、归纳、推理、探索的思维能力。其中变式训练包括一题多解,多题一解,一题多变。
2.4重视数学思想方法的教学
在教学过程中,教师对数学思想方法的传授对学生解题能力的提高起至关重要的作用。对数学问题发现、思考、规律的揭示,及结论的推广等过程都体现着某种数学思想,并受某种数学思维的指导。在教学中忽视这个过程就意味着失去了向学生传授数学思想方法的机会。因此,我们遵循“教师主导,学生主体”的教学原则,在教学过程中运用启发式教学,培养学生的自主创新能力,使其能够熟练运用各种数学思想方法,而非填鸭式教学,这就要求教师处理数学问题中循序善导。
在中学数学教材中都蕴含了那些数学思想方法呢?第一,具体的数学方法有:消元法,换元法,配方法,待定系数法等;第二,科学的逻辑方法有:类比,归纳,演绎,以及分析法,综合法,反证法等;第三,常用的数学思想有:数形结合思想,方程的思想,分类讨论的思想等。
例如在掌握一元一次方程(组)的解法后,可让学生尝试求解二元、三元一次方程(组)的方法,其实就是用消元法将三元转化为二元,再将二元转化为一元方程(组)进行求解,初步体会化归思想。
2.5加强学生数学解题的规范性的教学
讲解例题作为教学过程的一个重要部分,它不仅能激发学生对于数学知识学习的兴趣,而且对学生做题过程有重要的示范作用。教师在讲授每节课时,一定要充分发挥例题的重要作用,仔细地研究分析相关例题的解题规范与注意要点。讲解例题、作业、习题、试题时板书的规范的格式,这样学生就有参照,自然上行下效。对于学生的作业,应该要求解题过程有理有据,每一步都有出处,有条件。小学阶段的几何知识较少,解几何题时的要求比较低,而中学阶段解几何题时要求用几何语言表达。不同阶段的要求不同,解题的规范也会发生变化,因此教师一定严格要求学生的书写格式以及语言表达,强化解题规范意识,使学生的规范解题成为习惯。
2.6不断归纳总结,增强解题功效
解题不能只注意解题过程的完成或单纯追求结果的对与错,解题后,要求学生归纳所用知识,重要知识的用法,解类似题的方法技巧,并查错补遗,寻求最佳方案等。通过这样的训练,培养学生的良好的解题习惯,通过过程挖掘,提炼解题指导思想,归纳总结解题方法,上升到思想方法的高度,抓住实质,揭示规律,从而更高层次上发挥解每一类数学问题的功能作用,大量节省做题时间同时大大提高效率,学生的解题能力才会得到较大提高。
七年级所学知识中几何证明主要考到的是说明三角形全等,因此在做题过程中时刻注意已知条件中是否给出说明三角形全等的条件,以 数学是自然科学是基础学科,是中小学教育中必不可少的基础学科,它对发展学生的智力,培养学生的能力,特别在培养人的思维方面,具有其它学科任何一门学科都无法替代的特殊功能,中学数学解题能力的培养也是多方面的,没有固定的模式,我们要不断加强教育理论的学习,及时准确把握学生的状况,改进教法,引导学生真正成为学习的主人,让素质教育在数学教育这块园地中开出更美的花朵,结出丰硕的果实。
参考文献
[1](美)G·波利亚著,涂泓,冯承天译.怎样解题[M].上海科技教育出版社,2000-4-25
[2]希阳,源流.七年级发散思维大课堂[M].龙门书局,2012-6-20
[3]杨红潮.中学生数理化(七年级数学)(北师大版)[J].中华人民共和国新闻出版总署,2012,14(1)
[4]薛金星.中学教材全解(七年级数学)(北师大版)[M].人民教育出版社,2010-4-15
[5](美)乔治·波利亚著,刘景麟等译.数学的发现:对解题的理解、研究与讲授[M].科学出版社,2009-05-01
[6]金英兰.初中解题方法数学7年级(第3次修订版)[M].延边大学出版社,2011-05-01
数学与应用数学专业毕业论文3
摘要:长期以来,许多学校的课堂教学存在一个严重问题,即只注重教师与学生之间的“教”与“学”,而忽视了数学知识的实用性,从而导致学生自主学习兴趣萎缩。学生是学习的主人,而不是被动地接受知识的容器,在学习过程中要培养学生自主学习的兴趣和能力。教师要将更多的精力放在指导学生学习知识的过程中,是教学的参与者,要担负着为学生营造自主学习的空间和背景,要认识到课堂教学只不过是师生共同研究问题、解决问题的一个环节,帮助学生本质地理解数学,运用数学和发现、创造的能力时,我们就把握住了数学教育的时代性、科学性,我们就深入到了数学素质教育的核心。随着我国教育事业的不断进步和发展,我们应紧跟时代的步伐,大力推进中学数学课程、教材、教法的改革,数学教师必须转变教育观念,掌握新的教学基本功,为最终提高新课程的教学而努力。
关键词:应用;探索;实践;实用;乐趣
19世纪后期,20世纪初期,欧美相继掀起了一场声势浩大的教育改革运动,在这场教育革新运动中出现了以学生为中心、以活动为主的新教育思潮。也出现了一批新思潮的代表人物,其中以教育家蒙台梭利最为典型,他还设计了新的教学模式并与旧教学模式相对照:
随后,世界各国都不同程度地意识到课程改革的重要,也出台了各具特色的课程实施方案,可以说课程改革已成为21世纪世界教育改革的一个共同热点。国家教育部也当机立断,从我国教育改革和发展的实际需要出发,用较短的时间研制出一套基础教育课程改革方案,于2001年6月向全国颁发了文件,要求广大教育工作者积极参与与试行,而且在许多方面已经取得了显著的成就。
在新课程改革的目标中有一条是:“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力。”从数学这一学科来讲,这就是要求我们在运用数学的过程中向学生传授数学知识。
数学这门课程给人的总体感觉是:枯燥、单调、乏味。因此,学生学习起来也没有什么兴趣。如何才能让学生喜欢数学呢?据一项研究发现,学生是否对数学有兴趣,最重要的因素之一是数学内容是否对自己有用,包括在生活中、数学中和其他学科中等。而且这种现象随年龄的增长更为明显。因此,我们必须认识到,数学课程应该给学生提供认识数学的用途,运用所学的数学知识解决实际问题的机会。所以,要让学生喜欢数学,就必须让学生感受到数学的趣味性和实用性,这就需要教师准确地把握切入点,恰当地引导。笔者就是从运用数学的角度来进行数学课教学的,发现学生学习数学的劲头特别足。那么,如何在运用数学的过程中向学生传授数学知识呢?笔者认为,要真正做到这一点,教师就必须了解数学的特点和学生的年龄特征,并能恰当地处理好它们,这样才能充分唤起学生的求知欲,进行高效的教学。
一、数学的特点
数学是研究现实世界数量关系和空间形式的一门科学,它的基本特点是高度的抽象性、逻辑的严密性和应用的广泛性。
1. 高度的抽象性
*在他的经典论断“纯数学的对象是现实世界的空间形式和数量关系”中指出,数学的内容不是在头脑中凭空构思出来的,而是从现实世界中经过抽象出来的。我们知道,从具体的事物中抽象出数量关系和空间形式,这是一种抽象能力。它不仅是学习数学的需要,而且是认识事物的基本能力。因此,通过数学学习,培养抽象能力是数学教学的重要任务。
例如,进行相交线的教学中,笔者出示了这样一个问题:如右图,*面上有A、B、C、D四个村庄,为解决当地缺水问题,*准备投资修建一个蓄水池。
(1)不考虑其他因素,请画出蓄水池H的位置,使它与四个村庄的距离之和最小。
(2)计划把河中的水引入蓄水池中,怎样挖可使开凿的水渠最短?说明理由。
本题就是看你能否从实际生活中的问题中抽象出一个纯数学问题来,其实就是利用“两点之间线段最短”和“垂线段最短”来解决实际问题的一个题目,也是相交线在日常生活中运用的充分体现。让学生感受到数学的有用性,自然就增强了他们学习数学的兴趣。
2. 逻辑的严谨性
逻辑的严谨性反映了数学结论的确定性与逻辑结构的严密性。凡是数学结论的获得都要经过严格的演绎推理,从条件出发,根据公理、已证明的定理,按照正确的推理规则得出结论。在新的结论的推证过程中,要步步有依据,处处合乎逻辑要求。因此,通过数学学习培养学生逻辑思维能力是数学教学的基本要求。
例如,在学习三角形三边关系时,笔者问一个个子最大的同学:你一步最多能迈出多远?能通过今天的知识加以说明吗?然后,笔者给同学们一个问题:如果把△ABC的三条边分别记作a,b,c,那么请说明:a+b>c,b+c>a,a+c>b。
本题是利用“两点之间线段最短”的性质来推导“三角形两边之和大于第三边”性质的问题,在于让学生能够运用所学的知识进行推理行为的训练,同时也让他们知道在学习数学时,严谨的逻辑推理是多么重要,而且在我们的日常生活中,也处处都要用到这种数学的逻辑推理思维。
3. 应用的广泛性
数学应用的广泛性,一方面表现在我们日常生活、生产实践中,几乎无处不碰到涉及数量关系和空间形式的问题,都要用到数学知识;另一方面表现在现代科学技术的学习研究中,出现了“数学是一切科学得力的助手和工具”的趋势。数学不仅是它的内容,而且还包括它的思想和方法。同时,数学也是学习物理、化学等课程的工具。因此,向学生传授必需的数学基础知识,培养学生获得知识和运用知识的能力,是数学教学的基本目的。
例如,在学习“利用二次函数性质求最值”时,笔者选了这样一个题:某公司要设计一种无盖的长方体包装箱,用一块正方形木板,其边长为1米,如何设计才能使这个包装箱的容积最大?请画出设计图。 此题在于让学生用所学知识自行设计方案,学以致用,体会数学知识用途之广,同时也强化了数学的应用过程,感觉到以后的学习、生活、工作中确实离不开数学,大大激发了学生学习数学的欲望。
二、学生的年龄特征
中学教育的对象是十一二岁至十六、七岁的青少年,从思维发展的特征看,他们正处在以形象思维为主逐步向抽象思维过渡的阶段。因此,我们在确定教学目标时,要考虑到学生智力发展水*的局限性以及经验方面的不足,在教W中对基础知识和基本能力的要求不能太高、太深、太广,而应适应学生的知识水*和理解水*。
例如,笔者在一本资料书中看到这样一道填空题:n名同学参加乒乓球比赛,每两名同学之间赛一场,一共需要进行 场比赛。这题对于学生来说,有些难了,甚至无法下手了。笔者后来把它改为:5名同学参加乒乓球比赛,每两名同学之间赛一场,一共需要进行多少场比赛?10名同学呢?n名同学呢?这样,就把难度分散了,而且学生也容易找出规律来,还能培养学生的探索精神。
另外,考虑到学生的智力发展是有潜力的,因此,一些较抽象、较深奥的数学初步知识,可以通过适当的方法教给学生,使中学生的聪明才智得到充分利用和发挥。
因此,在了解教学内容和教学对象的特点之后,就可以在教学活动中充分从实际应用中来传授数学知识,可以让学生感到数学的有用性,体会到数学为学生毕业后适应生活、参加生产和进一步学习所必需,并且也是学习其他有关课程的工具。这样,学生学习起来就有兴趣了。另外,从运用数学数学的角度来进行教学还有以下几个优点:
1. 贴近学生生活实际,很大程度上降低了教学内容的难度
通过许多学生熟悉的事物和情景来引入课题,并用新知来解决身边的问题,让学生感觉到掌握数学知识的重要性,同时也使原本乏味的数学课处处洋溢着生活的气息。学生学习起来比较轻松,易于接受新知。
2. 提供给学生充分实践、思考和交流的空间
在新教材中编写了大量的课题学习和数学活动等内容,这些内容就是让学生经过自主探究和合作交流,综合运用已有的知识、方法和经验等来解决问题的课程。在这个过程中,学生将不断地尝试用各种知识和方法解决问题,也将与他人进行广泛的交流与讨论,加深了对相关数学知识的理解,从而不断积累研究问题的经验和方法。同时也养成了独立思考、认真分析、勇于质疑、不怕困难等习惯,而这些习惯都将会使他们终身受益。例如,人教版九年级上册教材中的课题学习“测量底部不可到达的物体高度。”就需要学生分组合作,认真分析、思考,与同伴共同来完成,体现了团队精神。
3. 加强数学知识之间及学科之间的联系,提高解决问题的能力
运用数学解决问题时,要引导学生体会数学知识之间的联系及各学科之间的知识联系,感受知识的整体性,不断丰富解决问题的策略,提高解决问题的能力。
以上就是笔者对在运用数学的过程中进行数学教学活动的一些切身体会和看法。至少笔者发现这种教学方式可以非常有效地吸引住学生,同时也让学生感到数学知识不但有用,而且有趣,大大提高了他们学习数学的兴趣。
推荐访问:应用数学 数学 专业毕业论文 数学与应用数学专业毕业论文 菁选3篇 数学与应用数学专业毕业论文1 数学与应用数学专业毕业论文100字 数学与应用数学专业毕业论文1000字 数学与应用数学专业毕业论文10篇