下面是小编为大家整理的考研数学典型题解题方法及思路点拨,供大家参考。
考研数学典型题解题方法及思路点拨1
一、面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。
做题的过程中,必须考虑为什么要用这几个原理,而不用那几个原理,为什么要这样对这个式子进行化简,而不那样化简。做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法……就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。
二、学习数学,重在做题,熟能生巧。
对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。此外,还要初步进行解答综合题的训练。数学考研题的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。这也有利于进一步理解并彻底弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。
三、同时要善于思考,归纳解题思路与方法。
一个题目有条件,有结论,当你看见条件和结论想起了什么?这就是思路。思路有些许偏差,解题过程便千差万别。考研数学复习光靠做题也是不够的,更重要的是应该通过做题,归纳总结出一些解题的方法和技巧。考生要在做题时巩固基础,在更高层次上把握和运用知识点。对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。
基础的重要性已不言而喻,但是只注重基础,也是不行的。太注重基础,就会拘泥于书本,难以适应考研试题。打好基础的目的就是为了提高。但太重提高就会基础不牢,导致头重脚轻,力不从心。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,在一个时期的某一个阶段以基础为主,基础扎实了,再行提高。然后又进入了另一个阶段,同样还要先扎实基础再提高水*,如此反复循环。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水*其实已经在不知不觉中提高了,因为在这个时期考生已经认识到了自已的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,考研本来就是一场意志力的比赛,不仅需要丰富的知识和较高的能力,更要有坚强的意志力。只要坚持下去,就有成功的希望。
最后,希望大家在复习过程中要加强考研数学综合解题能力的训练,熟悉常见考题的类型和解题思路,力求在解题思路上有所突破。
考研数学典型题解题方法及思路点拨扩展阅读
考研数学典型题解题方法及思路点拨(扩展1)
——考研数学临场答题解题思路的指导 (菁选2篇)
考研数学临场答题解题思路的指导1
考场上遇到这种情况不就前功尽弃了嘛。考场上不仅是学识比拼,更是一场争分夺秒的战役,所以,如果你现在还处于看到题目十多分钟都想不到解题思路的状态,快看看下面的建议吧。
考场上碰到一时想不出来的题目是正常的,建议先放一放,把能搞定的题目做完,再回过头来琢磨这道题。这样做的好处是:万一这道题做不出来,因为已经搞定大部分基础题,所以仍能得到一个可接受的分数;做出来,当然是锦上添花了。另外,搞定大部分基础题后,考生心理会"有底",而在放松的状态下是有利于做出较难的题目的。
有的同学做不出某道题,不愿意往下走,做下面的题会不舒服。小编想提醒这类同学:我们毕竟是在考试,而不是做学问。考试的目的是在限定的时间内发挥出最佳水*,取得尽可能高的分数。所以考试是个"条件最值"问题,我们无法取到"无条件最值"那种理想解。而做学问应该花时间搞定每个点。考试是务实的,而做学问则带有理想主义色彩。
其实,考试不仅仅考大家对知识的掌握情况,同时也考大家的应试能力,能做到随机应变才是以后学习和科研的重要技能。希望大家针对个人情况,好好调整心态,争取取得最理想的成绩。
考研数学临场答题解题思路的指导2
1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。
4.若要证明一组向量a1,a2,...,as线性无关,先考虑用定义再说。
5.若已知AB=0,则将B的每列作为Ax=0的`解来处理再说。
6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。
8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
考研数学典型题解题方法及思路点拨(扩展2)
——考研数学证明题解题的方法 (菁选2篇)
考研数学证明题解题的方法1
纵观近十年考研数学真题,大家会发现:几乎每一年的试题中都会有一个证明题,而且基本上都是应用中值定理来解决问题的。但是要参加硕士入学数学统一考试的同学所学专业要么是理工要么是经管,同学们在大学学习数学的时候对于逻辑推理方面的训练大多是不够的,这就导致数学考试中遇到证明推理题就发怵,以致简单的证明题得分率却极低。除了个别考研辅导书中有一些证明思路之外,大多数考研辅导书在这一方面没有花太大力气,本人自认为在推理证明方面有不凡的效绩,在此给大家简单介绍一些解决数学证明题的入手点,希望对有此隐患的同学有所帮助。
一、结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。
知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
二、借助几何意义寻求证明思路
一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及 y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
三、逆推
从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设 F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。
对于那些经常使用如上方法的同学来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的同学来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。
考研数学证明题解题的方法2
要对题目有感觉
学习过程中,考生总是会遇到各种题型,方法多样,大家光理解了方法不可以,还必须能够对题目有感觉,在以后的学习中如果还遇到相同的题型,要能反映到用什么方法。这就需要大家对于解题方法的沉淀。建议考生准备归纳本,把相关题型整理在一个集合中,这样慢慢下来,就容易发现题目有何特点的时候采用什么方法。这对于今后的复习也是极有帮助的。其实同学们从复习初期就应该开始为自己准备两个笔记本,一本用于专门整理自己在复习当中遇到过的不懂的知识点,并且将一些容易出错、容易发生混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,定会留下非常深刻的印象,避免遗忘出错;另一本用来整理错题,同学们在复习全程中会遇到许多许多不同类型的题目,对自己曾经不会做的`、做错了的题目不要看过标准答案后就轻易放过,应当及时地把它们整理一下,在正确解答过程的后面简单标注一下自己出错的原因、不会做的症结,以后再回头看的时候一定会起到很大的帮助,这也是循序渐进稳步提高解题能力的关键环节。 考研 教育网
答题要有层次
考研数学题目有三种题型:选择题、填空题、解答题。选择题可供选用的方法有:排除法,特殊值法,反例法,直接求解法等。一般来说,前三种方法会比直接求解简单快速,但这依赖于考生对所考查知识的熟悉程度及错误选项的干扰性强度。填空题只需得到最终结果,与计算过程及所用方法无关,题目难度与运算量也不太大,无需注重过程,但计算中力求准确无误,以免出现方法对而结果错失分的风险。解答题注重方法与运算、推理步骤,对于可选有多种途径解题的情况下,优先选择易叙述清楚、过程简洁、运算量小的一种。因为解答题按步得分,对每一步推理或运算,必须写清所用原理或推理因果关系。在做题时要注意不同的题目按照不同的方法去做。
预祝全体考生复习顺利,金榜题名!
考研数学典型题解题方法及思路点拨(扩展3)
——考研数学冲刺掌握解题的思路
考研数学冲刺掌握解题的思路1
高数定理证明之微分中值定理:
这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。
费马引理的条件有两个:1.f"(x0)存在2.f(x0)为f(x)的极值,结论为f"(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f"(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。
费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。
该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。
闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?
前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。
那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。
拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。
以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。
高数定理证明之求导公式:
2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。
当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。
高数定理证明之积分中值定理:
该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。
若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。
若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。
接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。
高数定理证明之微积分基本定理:
该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。
变限积分求导定理的"条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。
“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。
该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。
注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。
考研数学典型题解题方法及思路点拨(扩展4)
——考研数学冲刺有哪些单选与证明题解题技巧 (菁选2篇)
考研数学冲刺有哪些单选与证明题解题技巧1
单选题经典解题技巧
1.推演法。提示条件中给出一些条件或者一些数值,你很容易判断,那这样的题就用推演法去做。推演法实际上是一些计算题,简单一点的计算题。那么从提示条件中往后推,推出哪个结果选择哪个。
2.赋值法。给一个数值马上可以判断我们这种做法对不对,这个值可以加在给出的条件上,也可以加在被选的4个答案中的其中几个上,我们加上去如果得出和我们题设的条件矛盾,或者是和我们已知的事实相矛盾。比方说2小于1就是明显的错误,所以把这些排除了,排除掉3个最后一个肯定是正确的。
3.举反例排除法。这是针对提示中给出的函数是抽象的函数,抽象的对立面是具体,所以我们用具体的例子来核定,这个跟我们刚才的赋值法有某种相似之处。一般来讲举的范例是越简单越好,而且很多考题你只要简单的看就可以看出他的错误点。
4.类推法。从最后被选的答案中往前推,推出哪个错误就把哪个否定掉,再换一个。我们推出3个错误最后一个肯定是正确的。后面三种方法有些相似之处,类推法这种方法是费时费力的,一般来讲我们不太用。
总结:经常进行自我总结,错题总结能逐渐提高解题能力。大家可以在学完每一章后,自己通过画图的形式回忆这章有哪些知识点,有哪些定理,他们之间有些什么联系,如何应用等;对做错的题分析一下原因:概念不清楚、定理用错了还是计算粗心?数学思维方法是数学的精髓,只有对此进行归纳、领会、应用,才能把数学知识与技能转化为分析问题、解决问题的能力,使解题能力“更上一层楼”。
证明题的解法与技巧
1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。
知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的 存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
2.借助几何意义寻求证明思路
一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及 y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
考研数学冲刺有哪些单选与证明题解题技巧2
第一:求极限
无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时考生需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!
第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式
证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的一个难点,但考查的概率不大。
第三:一元函数求导数,多元函数求偏导数
求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。
另外,二元函数的.极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。
第四:级数问题
常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。
第五:积分的计算
积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的使用,对称性的使用等。
第六:微分方程
解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即*常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。
这六大题型可以说是考试的重点考查对象,考生可以根据自己的实际情况围绕重点题型复习,争取达到高分甚至满分!
考研数学典型题解题方法及思路点拨(扩展5)
——考研数学概率排列组合的方法及例题解析 (菁选2篇)
考研数学概率排列组合的方法及例题解析1
▶1.元素分析法
【例】求7人站一队,甲必须站在当中的不同站法。
【解析】要求甲必须站在当中,因此只需对其它6人全排列即可,不同的站法共有几种。
▶2.位置分析法
【例】求7人站一队,甲、乙都不能站在两端的不同站法。
【解析】先站在两端的位置有几种站法,再站其它位置有几种站法,因此所有不同的站法共有几种站法。
▶3.间接法
【例】求7人站一队,甲、乙不都站两端的不同站法。
【解析】考虑对立事件为甲乙都站在两端,共有几种站法;7人站成一队所有的站法共几种,所以甲乙不都站两端的不同站法共几种。
▶4.捆绑法
【例】求7人站一队,甲、乙、丙三人都相邻的不同站法。
【解析】先将甲、乙、丙看成一个人,即相当于5个人站成一队,有几种站法,再对这三个人全排列即得所有的不同站法共几种。
▶5.插空法
【例】求7人站一队,甲、乙两人不相邻的不同站法。
【解析】先将其它五人全排列,然后将甲、乙两人插入所产生的6个空中即可,共几种不同的站法。
▶6.留出空位法
【例】求7人站一队,甲在乙前,乙在丙前的不同站法。
【解析】由于甲、乙、丙三人的顺序一定,因此只要其余4人站好,这7个人就站好了,不同的站法共有几种。
▶7.单排法
【例】求9个人站三队,每排3人的不同站法。
【解析】由于对人和对位置都无任何的要求,因此,相当于9个人站成一排,不同的站法显然共有几种。
数学是考研最重要的学科,而且这一科目需要掌握的内容多,考核的方向也相对固定,因此各位2017考研的同学们应该多下功夫。
考研数学概率排列组合的方法及例题解析2
1.思考着去做题,去总结
很多学生都有这样的困惑,做了很多题但不会的题还是很多,最可气的就是很多题明明做过,但是再遇到还是不会做!这就是很多同学存在的`通病,不求甚解。总以为不会做了,看看答案就会了,并不会认真的思考为什么不会,解题技巧是什么,和它同类型的题我能不能会做等等。其实,这些都是很重要的,提醒大家要学着思考,学着“记忆”,最重要是要会举一反三,这样,我们才能脱离题海的浮沉,能够做到有效做题,高效提升!
2.侧重基础,培养逆向思维
很多时候,备考者会陷入盲目的题海中,这也是很多考生对数学感到头痛的原因所在。其实在前期复习知识点的时候,就应该把定义、定理的推导作为一个重点内容,重视推导和例题中的方法与技巧,认真分析这些方法,将它们套用到相应的练习题中,比做大量的重复练习要高效得多。
同时,思维习惯大大影响着学习效果。当进入考研数学复习备考的时候,大多数人继承了以往学习的习惯,思维也基本上定型了,也就是进入了定势思维。习惯性思考方式在一方面有优势,另一方面也制约着学习成绩的提高,我们现在要做的就是打破惯性思维!
3.做题有始有终,提高计算能力
数学不等于做题,但是不可避免的是学好数学一定要做题,那么如何做题?我们说基础的扎实巩固是根本,再这个基础上进行做题。同时,提醒大家的是复习一定要养成一个好的习惯,拿到的数学题一定要有始有终把它算出来,这是一种计算能力的训练,尤其是计算量大的时候,如果没有*常这样一个训练,在实际考试的时候在短时间内是很难心有余力也足的。
4.深入思考,善于总结
考试里不仅仅是考察我们基本概念、基本理论、基本方法的问题,还涉及到我们灵活运用知识的能力问题,所以仅仅是依靠教材很难把它这种考试命题的特点归纳总结出来,因此要了解考试,历年考试的真题作为准备去参加研究生考试的同学是必备的。
大家选真题的时候应该考虑到能不能通过真题的分析帮助我们真正的归纳总结这样一些题型出来,针对每一个问题我们应该如何去分析和讨论在分析讨论过程中间,有没有一些可能的变化情况,这些变化情况到现在为止,考到了哪一些,那一些就是我们下一步复习应该注意的,这样每一部分你都能够这样去归纳、总结或通过这种相关的辅导书帮助你归纳总结出来了,复习就更有针对性。
5.揣摩真题,把握方向
真题的作用是不容忽视的,经过十几年的考试,相当多的题目模式已经定了下来,很多考研题目都是类似的。考研真题经过千锤百炼,在思想性上有较高的参考价值,需要多加揣摩。尤其是近两年的考题,反映了命题者出题的方式和思路,更要注意。所以,同学们一定要把真题重视起来!
考研数学典型题解题方法及思路点拨(扩展6)
——考研英语阅读的解题思路及技巧
考研英语阅读的解题思路及技巧1
一、完形填空
由于完形填空所占分值不高,许多同学都选择放弃,从历年的*均分可看出,每年*均分都在5分左右,低于及格分。毕竟分值不多,就算投入大量时间和精力也不一定能保证多几分,大家习惯复习阅读时顺带复习完形,或者干脆不管,交给人品。
但是我们的目标是考高分,没人能保证自己除完型以外的题型都能拿到很好的成绩,那学习一些完形填空出题规律以及做题的技巧和方法,争取达到及格分以上,给自己增加一些砝码,何乐而不为。
对于完型这种提分不容易,分值比例又较低的部分同学们都倾向于用“技巧”解题。在此要提醒同学们,任何技巧都是建立在基础上的,技巧不能决定成败,但可起到锦上添花作用。
▶1.以真题为参考,立足真题。把完形出现的固定搭配、固定词组整理出来。
A、完形填空的第一句话作为文章的开篇,告诉我们文章的主题,下面的内容都是围绕它展开,因此第一句都是完整的,我们也要紧抓第一句话,自己所做的选择都应与第一句的意思相一致。另外注意完形填空选的是最佳答案,而不是正确答案。
B、学会利用红花绿叶原则做题。完形词汇分为红花词和绿叶词。红花词就是每次出现在真题里都会选;绿叶词就是屡次出现屡次不选。比如说however、although、yet、because等属于红花词。Since、nowthat、what、ifonly、incase等都属于绿叶词。根据往年经验,利用红花绿叶原则做题能做对2-5题,但同时也有失手可能,失手也是有原因的,因为和后面提到的原则矛盾了。
C、同义原则:在四个选项中,当两个或三个实词互为同义词时,答案往往在其中。当两个或三个虚词互为同义词时,往往都不选。当四个选项都有一个共同意思时,该意思往往不能入选。
▶2.完形填空选项答案有没有什么规律?
A、四个选项都是4-6个之间,四个答案是均匀分布的。
B、没有连续三个答案都是一样的情况。
C、在五个一组的答案里,至少要出现三个字母。
二、阅读部分
阅读理解是考研的重头戏,所占分值最大,甚至有“得阅读者得天下”一说。
▶1.阅读理解的复习方法
A.以真题为纲,用精读的、剖析的角度来复习真题中的阅读文章。
精读的标准:一是把文章中涉及到的每个生单词背会,熟练运用。二是挑选出自己认为比较难的句子亲自翻译和透彻分析,背诵句子。三是把文章后面每一道题都要进行回炉,进行透彻分析,把每一个选项为什么对、为什么错分析清楚。
B.同时也要进行一些泛读。泛读最好的素材是国外报刊杂志,比如Economist(经济学家)、Newsweek(新闻周刊)、Time(时代周刊)等,不要期待读到原文,只是一个锻炼自己的方式而已啦~
▶2.应该如何做阅读,遵循什么样的步骤?
A.扫描题干、划出关键词。拿到阅读的第一步是先看题干,这样可以建立目标感,对文章主要内容和脉络有个大致了解。
B.通读全文、抓住中心。通读时要把握两个重点,一是文章首段;二是其余各段的转折和首尾句。另外通读时要思考三个问题:文章叙述的主要内容、文章有无提到核心概念、作者大致态度。
C.仔细审题,返回原文。关键词定位法,由题干出发,寻找关键信息。
D.重叠选项,得出答案。遇到难的文章可采用看一题读一段的解题方式。
▶3.阅读分为三大类九大题型
第一类是:细节题、词汇题、句子理解题和指代题,这类题型主要考察文章的细节;
第二类:判断题和推理题,这类题归结到文章的段落,句子与句子的关系;
第三类:例证题、主旨题和态度题,这是考察文章宏观和整体内容。每种题型的技巧与方法,自己去总结一下,别人说的终究是别人的,不是你自己的哦。
三、翻译部分
翻译总体来看,是考研英语中最难的部分。说它最难,主要是因为翻译考察的内容和要求最多、最高。该部分需考察单词、语法等基本问题,还有句子结构分析、英语背景知识和中文水*,所以翻译的分数不好拿。
从近些年的真题中命题者有一个非常明显的"趋势,就是加大了复杂句子结构和文章的考察力度。这体现在各部分的题型当中,尤其以英译汉部分最为明显。所以,欲得高分的考生应该把更多的精力放在文章长难句和段落逻辑结构的把握上,再加上一定的应试技巧和策略,才能在考研英语中取得高分。
▶翻译解题的三个过程
一是理解。也就是说要理解句子中的词汇、短语。
二是表达,表达是理解的结果。影响表达的因素有译者对英语原文理解的深度、译者自身汉语修养的程度、译者对英汉两种语言文化的掌握程度,译者尽量摆脱原文束缚。
三是校对、检查。这步要求比照英语原文和汉语译文检查句子是否准确、通顺。
四、写作部分
写作是第二大重头戏,仅次于阅读。但是这部分又经常被考生忽略,考前不动手,依赖临考模板。大家应该注意*时复习其他题型时的积累,积累高级词汇、短语和句型,对于考研写作,最基本的要求是考前必须动笔写一定数量的文章。