当前位置:百纳范文网>专题范文 > 公文范文 > 多边形面积教学设计,菁选五篇【完整版】

多边形面积教学设计,菁选五篇【完整版】

时间:2023-02-15 08:00:10 来源:网友投稿

多边形的面积教学设计1  教学内容:  西师版教材五年级上册,多边形面积的运用。  教学目标:  1、让学生理解长方形里能剪几个相同的小正方形、小长方形、小三角形这类题的计算方法  2、让学生经历摆下面是小编为大家整理的多边形面积教学设计,菁选五篇【完整版】,供大家参考。

多边形面积教学设计,菁选五篇【完整版】

多边形的面积教学设计1

  教学内容:

  西师版教材五年级上册,多边形面积的运用。

  教学目标:

  1、让学生理解长方形里能剪几个相同的小正方形、小长方形、小三角形这类题的计算方法

  2、让学生经历摆一摆、剪一剪的过程,探索、掌握此类题的解题方法

  3、培养学生小组合作学习的能力

  4、培养学生的动手操作能力和空间想象能力

  学具准备:

  小正方体,大长方形卡纸、小正方形、小长方形、小三角形

  课前分小组:

  4人一组;

  了解学情:

  1、学生对长、正方形,三角形的面积是否会算,

  2、在解决此类问题时,能否出现两种算法,第一种:用大图形面积除以小图形面积,第二种:用每排个数x排数

  3、小组合作学习的情况,了解每组擅长表达的孩子,找好发言人

  教学过程:

  课前活动:搭积木

  至少用几个这样的积木(正方体),可以搭成一个大正方体?

  生答。可能会出现4个,或8个两种答案。

  小组合作,拿出小正方体,摆一摆,验证答案。并汇报。

  有时候我们靠想象不能判断出答案是否正确时,可以用身边的实物动手摆一摆,把抽象变成直观,在摆的过程中也许正确答案就出来了。

  (引导学生大胆表达,说得好的用掌声鼓励)

  一、 谈话引入

  前面学了多边形面积的计算,今天我们就用多边形面积解决实际问题。板书课题。

  二、新授课

  (一) 活动一:(刚好摆完,没有剩余)

  一张长18厘米,宽12厘米的长方形卡纸,可以剪多少个边长是6厘米的小正方形?

  小声读题,找出关键词,理解题意。

  请学生说做法,可能出现两种,如果没有出现摆一摆的方法,“如果给你们这样的长方形、小正方形,能不能用摆一摆的方法来验证结果是否正确”

  下面小组合作,讨论做法

  活动要求:

  请组长拿出准备卡纸,开始吧。

  汇报,找出不同算法,老师板书算式,

  法一:大面积/小面积 法二、 摆一摆 (画出示意图)

  18x12=216(*方厘米) 每排个数 18/6=3(个)

  6x6=36(*方厘米) 排数 12/6=2(排)

  216/ 36=6(个) 总个数 3x2=6(个)可能会出现以下错误:216/6=36(个)用的边长

  或6x4=24(厘米 )216/24=9(个)用的周长

  教师引导学生进行错误辨析

  引导得出两种,方法大面积/小面积,

  提炼出以下词语,摆一摆,每排个数,排数,总个数

  (二)活动二:(没有摆完,有剩余)

  一张长18厘米,宽16厘米的长方形卡纸,可以剪多少个边长是6厘米的小正方形?

  活动要求:小组合作

  A方案 先列式,再动手摆一摆验证答案。

  B方案 先摆一摆,再列式计算

  A、B方案任选一种

  请一个小组读活动要求。

  请拿出准备的卡纸,各小组选择喜欢的方案,开始吧。

  法一出现错误,18x16=288(*方厘米)

  6x6=36(*方厘米)

  288/36=8(个)

  法二摆一摆 (画出示意图)

  每排个数 18/6=3(个)

  排数 12/6~2(排)

  总个数 3x2=6(个)

  引导学生辨析,得出法二的优势,做此类题用法二更好。

  摆的时候,只能摆2排,每排只能摆3个,剩余的部分不能再摆了,所以还是只能剪6个小正方形。

  用法一,只是去考虑了计算,没有考虑实际情况,所以是错的。解决问题时能用看答案与实际情况是否相符,来检查答案对不对。

  法一只适合刚刚摆完,没有剩余的情况,也就是长和宽都是小正方形边长的倍数

  法二能适合所有的情况。

  那以后你选择哪种方法来解答这类题,摆一摆的方法。更准确、数字更好算。

  (三)活动三

  一张长18厘米,宽16厘米的长方形卡纸,可以剪多少个底和高都是6厘米的小三角形?

  读题、辨析与上一题的不同点。

  活动要求:小组合作

  先摆一摆,再说一说,最后列式解答。

  汇报展示。让学生理解为什么每排个数要乘2。

  以学生的表现给予恰当的即时评价。

  总结出此类题的解题策略 :

  三、说说这节课,你有什么收获?

  (灵活处理)思考题:

  一个长20厘米,宽15厘米的长方形能剪( )个长15厘米、宽5厘米的小方形。

  板书设计: 裁 剪

  ―――多边形面积的运用

  法一:大面积/小面积 法二、 摆一摆 (画出示意图)

  18x12=216(*方厘米) 每排个数 18/6=3(个)

  6x6=36(*方厘米) 排数 12/6=2(排)

  216/ 36=6(个) 总个数 3x2=6(个)

  (错误)18x16=288(*方厘米) (画出示意图)

  6x6=36(*方厘米) 每排个数 18/6=3(个)

  288/36=8(个) 排数 12/6~2(排)

  总个数 3x2=6(个)

多边形的面积教学设计2

  教学内容:

  人教版小学数学教材五年级上册第113页第2题及相关练习。

  教学目标:

  (一)知识与技能

  复习已学的多边形面积的计算公式。

  (二)过程与方法

  利用转化思想,推导出*行四边形、三角形和梯形的面积计算公式,将各种组合图形的面积转化为已学的多边形面积并加以计算。

  (三)情感态度和价值观

  加强知识间的联系,培养学生综合运用各种知识解决问题的能力。

  目标解析:本学期所学的*行四边形、三角形和梯形的面积计算公式都可以从长方形的面积计算公式推导而来。理解推导的过程,对加强知识间的内在联系、掌握转化的数学思想方法起着重要的作用。掌握了这些,学生今后即使忘记某个多边形的面积计算公式,也可自行推导得出。在计算组合图形的面积时,可以鼓励学生采用不同的方法进行计算,提高学生解决问题的能力。

  教学重点:

  利用转化思想掌握多边形面积的计算公式。

  教学难点:

  采用不同方法计算组合图形的面积,提高综合应用知识解决问题的能力。

  教学准备:

  教具:课件;

  学具:每人准备两个完全相同的三角形、梯形和一个*行四边形。

  教学过程:

  一、创设情境,引出新课

  李爷爷有一块地,种了三种蔬菜,是哪三种呢?我们一起去看看(课件出示图片)。

  教师引导学生发现信息与问题。

  信息:种茄子的是一块三角形的地,底长15m,高是32m;种黄瓜的是一块*行四边形的地,底长25m,高是32m;种西红柿的是一块梯形的地,上底是15m,下底是23m,高是32m。

  问题:茄子、西红柿和黄瓜各种了多少*方米?这块地共有多少*方米?

  【设计意图】通过情境的创设,拉近数学与生活的联系,使学生产生亲切感,产生学习的兴趣。

  二、解决问题,复习方法

  1.三角形的面积=底×高÷2

  =15×32÷2

  =240(*方米)

  思考:计算三角形的面积时,为什么要除以2呢?

  (出示两个完全相同的三角形,请同学拼一拼,明白三角形的面积就是两个完全相同的三角形所拼成的*行四边形面积的一半。)

  2.*行四边形的面积=底×高

  =25×32

  =800(*方米)

  思考:为什么*行四边形的面积是“底×高”,而不是“底×斜边”呢?

  (沿*行四边形的高减下三角形,就可以拼得一个长方形。长方形的一边是*行四边形的底,长方形的另一边就是*行四边形的高。)

  3.梯形的面积=(上底+下底)×高÷2

  =(15+23)×32÷2

  =608(*方米)

  思考:有谁能说一说梯形的面积公式是怎样得来的?

  (用两个完全相同的梯形可以拼成一个*行四边形。*行四边形的底就是梯形的“上底+下底”,*行四边形的高就是梯形的高,梯形的面积是拼成的*行四边形面积的一半。)

  4.你能用不同的方法求出李爷爷菜地的总面积吗?学生独立解决问题再汇报。

  方法一:总面积=三角形的面积+*行四边形的面积+梯形的面积

  =240+800+608

  =1648(*方米)

  方法二:三种图形组合成一个梯形,上底是(25+23)米,下底是(15+25+15)米,高是32米。

  总面积=[(25+23)+(15+25+15)]×32÷2

  =1648(*方米)

  【设计意图】在呈现简单实际问题的情境中,让学生在解决问题的过程中,回顾了多边形面积计算公式的相关知识和推导面积计算公式的方法,既巩固了多边形的面积计算,又发展了学生迁移、转化的方法和思想。带着问题动手操作,使抽象的知识形象化,进一步唤起对旧知的回忆。用不同的方法求菜地的总面积,让学生进一步感受到解决问题的多样化,训练了学生的思维。

  三、巩固练习,应用拓展

  1.课件出示教材第116页练习二十五第7题。

  (1)学生独立解题。

  (2)汇报评价。

  2.课件出示教材第116页练习二十五第8题。

  (1)学生独立解题。

  (2)汇报评价。

  指名说清计算过程中的每一步所表示的意义。既可分段列式,也可以综合列式。

  3.课件出示教材第116页练习二十五第9题。

  (1)学生独立解题,教师巡视,适当指导。

  (2)小组交流汇报,教师评价。

  4.课件出示教材第116页练习二十五第10题。

  (1)题目给出什么条件,要求什么?

  (条件:小方格的边长为1cm。要求:组合图形的面积。)

  (2)学生自主尝试解决问题后,小组交流。

  (3)学生汇报自己是怎么想的,教师评价。

  【设计意图】第7题与第8题属于基础题,通过解决生活中的简单问题巩固*行四边形及梯形面积的计算公式,让学生进一步熟练面积计算公式;第9题的难度有所加大,体现运用不同方式解决问题的思想,充分体现了开放性,既可通过“割”的方式,也可通过“补”的方式来计算,方法三难度相对较大,需要教师引导学生找到三角形的高,让学生感受解决问题的多样性;第10题更为灵活开放,学生先确定方法,再找出相应的长度计算,通过学生汇报自己的思考方法,优化认知,形成共识。

  四、全课总结

  这堂课你巩固了什么知识?你有什么新的收获?

  【设计意图】将有关多边形面积的知识再次进行系统回顾,既加深印象,又将复习中获得的新知表达出来,让同学们共享,使其对知识的认知再次得到提升。

多边形的面积教学设计3

  【教学内容】:

  课本79页到81页的内容

  【教学目标】:

  1、知识与能力目标:使学生在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积.

  2、过程与方法:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3、情感态度价值观:通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。

  【教学重点】:

  理解公式并正确计算*行四边形的面积.

  【教学难点】:

  通过转化,理解*行四边形面积公式的推导过程.

  【教具】:

  多媒体课件

  【学具】:

  每个学生准备一个*行四边形纸片、剪刀。

  【教学过程】:

  一、复习铺垫。

  同学们这节课我们来学习第五单元的内容《多边形面积的计算》,这节课我们先来研究*行四边形的面积。

  现在大家来看这幅图,你在图中可以找到什么我们以前认识的图形呢?

  指名回答。

  同学们长方形正方形的面积我们都会计算了,这节课开始我们来学习四边形的面积计算。

  二、探索新知。

  1、在学校门口有两个花坛,一个是长方形的一个是*行四边形的,同学们这两个花坛哪个的面积大一些呢?

  我们可以用数方格的方法。

  同学们可以以小组为单位进行,在数的过程中要注意如果不满一格的我们就当半格数,数完后还要把图下面的表格填好。

  把你们小组数出来的结果和大家一起共同分享一下。

  根据刚才填的内容,观察表中的数据,你发现了什么呢?

  (*行四边形的底和长方形的长相等,*行四边形的高和长方形的宽相等,而且它们的面积也相等)

  【设计意图:通过让学生动手数方格以及观察表中的结果来初步了解长方形面积与*行四边形面积以及它们的长宽与底高之间的关系。】

  三、小组合作,探究方法。

  非常好!刚才我们通过数方格知道长方形的面积与*行四边形的面积的关系。下面我们通过小组合作的方式来找一找*行四边形和长方形的关系是怎样的。

  同学们能不能利用手上的*行四边形把它转化成我们学过的图形呢?(可以,可转化成长方形或正方形)

  下面大家分小组来进行操作,看你们组能不能用多种方法来进行转化。在做的过程中大家要注意*行四边形的大小不能有变化的。

  学生根据小组合作的结果在*台上进行展示。(可能会有不同的方法展示出来的)

  同学们,从刚才大家的展示可以看出,一个*行四边形可以转化成长方形或正方形,那它们是什么关系呢?(演示)

  由刚才的演示我们可以得出,长方形的长等于*行四边形的底,长方形的宽等于*行四边形的高,长方形的面积等开*行四边形的面积。(板书)

  由些我们可以得出:

  *行四的面积=底×高

  用字母表示是:

  S=ah

  小结:同学们由些我们可以知道,要求一个*行四边形的面积,我们必须要知道它的底和高。

  四、实际运用

  同学们我们现在可以有办法知道学校门口的两个花坛的面积哪个大了吧?

  我们不仅可以用数方格的方式,也可以用计算的方法来知道它们的面积,以后我们主要是通过计算来得到*行四边形的面积的。

  五、巩固练习。

  1、82页第1题。

  【设计意图:通过练习,找出存在问题,加以纠正并解决问题。让学生进一步掌握*行四边形面积的计算,并能利用学习到的知识解决实际的问题。】

  六、总结:

  这一节课我们学习了什么?你学会了什么?

  板书设计:

  *行四边形的面积计算

  长方形的面积=长 × 宽

  *行四边形的面积=底 × 高

  S=ah

多边形的面积教学设计4

  【教学内容】:

  人教版义务教育课程标准实验教材数学人教版小学数学五年级上册82~83页

  【教学目标】:

  一、 知识与技能:

  1、巩固*行四边形的面积计算公式,能比较熟练地运用*行四边形面积公式解答有关实际问题。

  2、引导学生养成良好的身体习惯。

  3、培养学生灵活运用掌握的知识解决问题的能力。

  二、过程与方法:

  经历运用*行四边形的面积计算公式解决实际问题的过程,体会数学与现实生活的密切联系。

  三、情感态度与价值观:

  感受数学知识的实用价值,激发学习数学知识的兴趣。

  【教学重、难点】

  会灵活运用所学知识解答有关*行四边形的实际问题。

  【教具准备】:

  课件、三角尺。

  【学具准备】:

  三角尺。

  【教学过程】:

  一、复习引入。

  1、计算*行四边形的面积有哪些方法?

  2、*行四边形的面积计算公式是怎样推导出来的?

  教师结合学生的回答板书*行四边形的面积计算公式:S=ah

  3、引入练习:今天这节课,我们就要用上节课学习的知识来解决一些实际问题。

  【设计意图:通过复习,让学生对有关知识进行梳理回顾。】

  二、指导练习。

  教材练习十五第2-7题 。

  1、课件出示第2题

  这道练习要求学生自己想办法求出*行四边形的面积,有一定的探索性。学生审题后同桌商量要求*行四边形的面积需要知道什么信息?指导学生先在课本上画出*行四边形一边上的高,再量出底和对应高的长度,注意引导学生可以以不同的边作底来求出面积。最后应用公式进行计算,同桌合作完成,集体交流。

  2、课件出示第3题

  这个*行四边形的高是多少?

  组织学生在小组中议一议,使学生明确,已知*行四边形的面积和底,求高学生可以依据乘除法的互逆关系学会灵活运用公式或列方程解答。独立完成,然后同学自己点评。

  板书:28÷7=4(m)

  或 解:设这个*行四边形的高是x米。

  7x=28

  7x÷7=28÷7

  X=4

  3、练习十五第4题

  这道练习要进行面积单位的换算和除法计算。

  (1)组织学生讨论题意。

  组织学生在小组中合作探究。

  (2)学生独立完成。

  (3)交流做法和结果,强调注意面积单位的变化。

  4、练习十五第5题

  这道练习是让学生认识等地等高的*行四边形的面积相等。

  (1) 引导学生讨论它们的面积相等吗?并说明理由。

  (2) 学生得出它们的面积相等的结论后,再让学生计算它们的面积验证刚才的结论。

  5、练习十五第6题

  第六题与第五题道理相同

  组织同学小组讨论:正方形与*行四边形有什么关系?引导学生明确算*行四边形面积就是算正方形面积。完成后小组汇报结果。

  6、练习十五第7题

  (1)组织学生以小组为单位做实物学具实验。

  实验过程要求学生观察、讨论什么不变什么变 ?

  (2) 进一步讨论面积怎样变化?什么情况下面积最大?小组汇报集体评析。

  三、拓展练习。

  8、练习十五第8题

  学生小组讨论A、B是大*行四边形上下两边的中点,可以得到什么信息?它们的高之间有什么关系?然后邀请一些愿意出来为大家分析的同学上讲台上说说他如何解决这个问题。最后老师归纳解答方法。对分析精彩的同学给予肯定和表扬。

  四、课堂总结。

  今天这节课的学习,我们进行了许多有关*行四边形面积知识的练习,你有哪些收获?正确解决*行四边形有关知识你认为要做到什么?注意什么?

  组织学生说一说,相互交流。

  板书设计:

  *行四边形的面积练习

  S=ah

  28÷7=4(m)

  或 解:设这个*行四边形的高是x米。

  7x=28

  7x÷7=28÷7

  x=4

多边形的面积教学设计5

  教学内容:

  冀教版小学数学五年级上册第60、61页三角形面积的应用。

  教学提示:

  学生已掌握了三角形面积的计算公式,在此基础上引导学生把计算结果同实际的需要联系起来,培养数学应用意识和解决实际问题的能力。

  教学目标:

  1、知识与技能:结合具体情境,经历综合应用知识解决实际问题的过程。

  2、过程与方法:通过解决与三角形面积有关的简单问题,获得综合应用所学知识解决实际问题的经验和方法。

  3、情感态度与价值观:愿意对数学问题进行讨论,感受数*算的合理性与结果运用的现实性,培养数学应用意识。

  重点、难点:

  教学重难点:会应用三角形的面积计算公式解决一些简单的实际问题。

  教学准备:

  多媒体,图形。

  教学过程:

  一、复习导入

  同学们,我们已经学习了哪几种*面图形的面积?

  谁能说一说怎样求他们的面积?(学生自愿回答)

  【设计意图:让学生复习长方形、正方形、*行四边形、三角形的面积公式,为下面的学习打下伏笔。】

  二、探索新知

  1、出示例题:有两块白布,用它们做医院包扎使用的三角巾(不可拼接),第一块白布:长135分米,宽9分米。第二块白布:长140分米,宽10分米。

  9d

  2、提出问题。

  第一块白布可做多少块这样的三角巾呢?第二块白布可做多少块这样的三角巾呢?请同学试着用自己的方法算一算。

  3、解决问题。

  学生试算,教师巡视。了解学生计算的方法。

  师:学生汇报计算的结果。

  生:我先算第一块白布和一块三角巾的面积,再计算第一块白布可做多少块三角巾。

  135×9=1215(*方分米)

  9×9÷2=40.5(*方分米)

  1215÷40.5=30(块)

  生:我列成了一个综合算式

  (135×9)÷(9×9÷2)

  生:边长是9分米的正方形白布可以做2块三角巾,那么第一块白布可做多少块三角巾,就用

  135÷9×2=30(块)

  【设计意图:通过让学生自己尝试解决问题,经历成功与失败,培养学生克服困难的精神和勇气。】

  师:同学们的做法很好,希望大家在做题的时候用不同的方法解决问题,提高自己的思维能力。

  师:哪个组再汇报一下第二个问题的解决方法。

  生:我们组用“总面积÷每块三角巾的面积”来做。

  白布面积:140×10=1400(*方分米)

  三角巾的面积:9×9÷2=40.5(*方分米)

  可以做多少块三角巾:1400÷40.5≈34(块)

  师:能做出34块吗?大家画图试一试。

  学生画图,发现问题,小组讨论

  师:同学们通过画图,发现了什么问题?

  生:第二块白布的长、宽虽然比第一块长5分米、宽1分米,题中要求“不可拼接”,所以不能做出34块,只能用第2种方法,做30块。

  生:先算白布长可以做多少个边长9分米的正方形。

  140÷9=15(个)……5(分米) 余数5分米是多余的布料,不能做一个三角巾。

  再算白布宽可以做多少个边长9分米的正方形。

  10÷9=1(个)……1(分米) 余数1分米是多余的布料,不能做一个三角巾。

  最后算可以做多少块三角巾。

  15×2=30(块)

  师总结:当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。

  【设计意图:在具体情境中,发展学生的空间观念,考察学生能否创造性运用已有知识。结合画图,引导学生把计算的结果同实际的需要联系起来,培养数学的应用意识和解决问题的能力。因此否定第一种算法、】

  三、巩固新知

  1、判断题

  (1) 两个面积相等的三角形可以拼成*行四边形行( )

  (2) 等底等高的三角形面积相等( )

  (3) 三角形的面积等于*行四边形面积的一半( )

  (4)三角形面积的大小与它的底和高有关,与它的形状和位置无关。( )

  2、一块广告牌是三角形,底是12.5米,高*米。如果要给广告牌刷漆(只刷一面),每*方米用油漆0.4千克,刷这个广告牌需要油漆多少千克?

  3、教材第61页练一练1题。

  答案:1、×、√、×、√ 2、16千克 、 3、0.48*方米,72元

  【设计意图:练习分层次设计,主要是巩固、熟练公式,解决实际问题是让学生感知生活化的数学。】

  四、达标反馈

  1、大白菜地的形状是三角形,底80米,高60米,如果每棵大白菜占0.2*方米,这地可种大白菜多少棵?

  2、明明的房间是一个长4米、宽3米的长方形。用直角边分别是4分米和3分米这样的直角三角形地砖铺地,至少需要多少块?

  3、教材第61页2-3题。

  答案:

  1、80×60÷2=2400(*方米) 2400÷0.2=12000(棵)

  2、4米=40分米 ,3米=30分米 ,

  40×30=1200(*方分米),4×3=12(*方分米),1200÷12=100(块)

  3、教材2、5×4.2÷2=10.5(*方米),39×11=429(千克)

  教材3、421≈400,58≈60,400×60÷2=12000(*方米)

  五、课堂小结

  师:通过今天的学习,你学会了那些知识?

  生:我知道:在实际问题中,三角形的底和高确定后,三角形的面积也就确定了。

  生:在解决问题时,根据实际情况确定方法。如例题的第二个问题就要考虑实际问题选择方法。当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。

  六、布置作业

  1、教材第61页4----6题。

  2、如图一个交通标志牌的面积是36*方分米,它的高是多少分米?


多边形的面积教学设计 (菁选5篇)扩展阅读


多边形的面积教学设计 (菁选5篇)(扩展1)

——多边形面积教学设计5篇

多边形面积教学设计1

  教学要求:

  1.巩固*行四边形的面积计算公式,能比较熟练地运用*行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  教学重点:

  运用所学知识解答有关*行四边形面积的应用题。

  教具准备:

  展示台

  教学过程:

  一、基本练习

  1、*行四边形的面积是什么?它是怎样推导出来的?

  2、口算下面各*行四边形的面积。

  (1)底12米,高7米;

  (2)高13分米,第6分米;

  (3)底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块*行四边形的麦地底长250米,高是78米,它的面积是多少*方米?

  (1)生独立列式解答,集体订正。

  (2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:250×780÷10000=1.95公顷,

  再求共收小麦多少千克:7000×1.95=13650千克

  (3)如果问题改为:“一共可收小麦58500千克,*均每公顷可收小麦多少千克?”又该怎样想?

  与⑵比较,从数量关系上看,什么相同?什么不同?讨论归纳后,生自己列式解答:58500÷(250×78÷1000)

  (4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.(1)练习十五第5题:

  1.4厘米

  2.5厘米

  a、你能找出图中的两个*行四边形吗?

  b、他们的面积相等吗?为什么?

  c、生计算每个*行四边形的面积。

  d、你可以得出什么结论呢?(等底等高的*行四边形的面积相等。)

  (2)练习十五6题

  让学生抓住*行四边形的底和高与正方形有什么关系。(*行四边形的底和高分别等于正方形的边长。)

  3.练习十五第3题:已知一个*行四边形的面积和底,(如图),求高。

  分析与解:因为*行四边形的面积=底×高,如果已知*行四边形的面积是28*方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习:练习十五第7题。

  四、作业:练习十五第4题。

多边形面积教学设计2

  教学目标:

  1.使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

  2.通过练习,巩固同学们学习的知识。

  3. 培养学生运用数学知识解决生活中问题的能力。

  教学重点:

  使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

  教学难点:

  培养学生运用数学知识解决生活中问题的能力。

  教学过程:

  一、复习梯形面积的计算公式。

  二、基本练习:

  1.求下面梯形的面积:

  上底2米 下底3米 高5米

  上底4分米 下底5分米 高2分米

  2.填空:

  两个完全一样的梯形可以拼成一个( )形,这个拼成的图形的底等于梯形的( )与( )的和,高等于梯形的( ),每个梯形的面积等于拼成的*行四边形面积的( )。

  3.梯形的上底是a,下底是b,高是c,则它的面积 =( )

  4.一个梯形上底与下底的和是15米,高是4米,面积是( )*方米。

  5.一个梯形的面积是8*方厘米,如果它的上底、下底和高各扩大2倍,它的面积是( )*方厘米。

  6.判断:

  1)梯形的面积等于*行四边形的面积的一半。 ( )

  2)两个完全相同的直角梯形,可以拼成一个长方形。 ( )

  3)一个上底是5厘米,下底是8厘米,高是3厘米的梯形,它的面积是12*方厘米。 ( )

  三、提高练习:

  两个完全一样的梯形拼成一个*行四边形,已知每个梯形的面积是24*方分米,拼成的*行四边形的面积是多少*方分米?

  四、小结:

  本节课我们主要学习了哪些内容?

多边形面积教学设计3

  教学目标:

  1、进一步理解和掌握多边形面积计算的方法,认识不同图形之间的联系,建构知识网络,能正确应用公式进行有关计算。

  2、在整理多边形面积计算公式推导的过程中进一步体会转化的思想,逐步形成用转化的策略解决问题的能力。

  3、发展空间观念,培养自主学习的意识、解决问题后的反思意识。

  教学重点:

  建构科学完整的知识体系,沟通知识之间的联系,灵活解决问题。

  教学难点:

  理解掌握多边形面积之间的联系,整理完善知识结构。

  教具准备:

  ppt课件、图片、复习单、易错题单等。

  教学过程:

  一、创设情景,引入课题

  观察南湖校区全景图,呈现土地形状,提出问题从而唤起学生记忆,引出课题。

  (设计意图:利用图片为学生创设学习的情景,将数学和生活联系起来,提出问题,自然引出了本课复习的内容,为后面的复习做好铺垫。)

  二、整理回忆,再现旧知

  师:课前我们已经对这五种多边形的面积计算知识进行了回忆整理。请问,关于多边形的面积计算你都整理了什么?(计算公式、公式的推导等)

  (一)展示收集到的学生自主整理的复习单,让学生体会整理面积计算公式的方式多样化。

  (二)回忆旧知

  1、忆公式。

  学生根据自主整理,汇报交流多边形的面积计算公式。(文字表达、字母表达式)

  2、忆推导。

  (1)小组内交流公式的推导过程。

  (2)小组代表全班交流。

  (3)师引导学生小结:在推导上述图形的面积时,都用到了转化的方法。转化是一种学习的好方法。

  (三) 理清联系,深化认识

  (四) 公式延伸,进一步感受各种图形的面积计算公式的联系

  课件动态演示:梯形上底长度渐变为0时,梯形演变为三角形。梯形的上底长度渐变成等于下底时,梯形演变为*行四边形。

  三、纠错分享,查漏补缺

  四、巩固应用,拓展提升

  1、 有一块草坪,求草坪的面积。

  2、有一块*行四边形菜地,DE=EF=FC,GB=GD,其中阴影部分种的小白菜,面积是8 ,求这块*行四边形菜地的面积是多少*方米?

  五、全课总结,自我评价

  师:通过这节课的复习,你有什么收获或者感受呢?

  (设计意图:通过对本节课复习的知识和复习方法的总结,将知识系统化,也教给学生整理知识的方法,培养学生的能力。)

多边形面积教学设计4

  教学内容:

  整理和复习。

  教学目的:

  1、通过复习,使学生理清各种*面图形面积计算公式之间的关系。

  2、使学生能够应用面积计算公式,熟练计算*行四边形、三角形、梯形和组合图形的面积。

  3、能灵活运用所学知识解决有关的实际问题。

  教学重点:

  熟练计算*行四边形、三角形、梯形及组合图形的面积。

  教学准备:

  *行四边形、三角形、梯形的磁片。

  教学过程:

  一、创设情境,揭示课题。

  1、想一想,本单元我们学习了哪些知识?

  揭示课题:今天这节课我们对第五单元的知识进行整理和复习。

  2、在小组内说一说,你学会了什么?

  二、知识梳理,形成网络

  1、复习多边形面积计算公式

  (1)老师分别出示*行四边形、三角形和梯形,让学生说一说各个图形面积公式是怎样推导出来的?

  老师根据学生所说,演示转化过程,形成如教材96页的板书。

  (2)从整理图中能看出各种图形之间的关系吗?

  学生回答后老师简要小结。

  2、练一练:

  老师出示下题让学生独立完成后集体核对。

  选择条件分别计算下列各图形的面积。

  3、师:刚才复习的是基本图形的面积,而由几个基本图形组合而成的图形叫什么?

  出示第96页的第2题,让学生自己独立完成。

  集体核对时让学生说一说自己的几种方法。

  学生可能会想到下面几种方法。

  比较哪种方法比较简便?

  三、应用拓展

  1、练习十九第1题。

  (1)让学生审题,说一说解题步骤。

  (2)独立完成。

  (3)小组交流,说一说你的发现。

  (4)全班交流。

  师小结:几个图形都在两条*行线之间,说明它们的高是相等的,在高相等的条件下,面积不等,说明它们的高都不等。

  2、练习十九第4题。

  (1)先让学生独立完成第1小题,集体核对。

  (2)出示第2小题,让学生思考:能剪几棵这样的小树要考虑什么因素?能不能用纸的面积除以树的面积?

  想一想该如何摆放小树?让学生在草稿本上画一画示意图。

  集体订正,展示。

  四、小结:说一说今天这节课最大的收获是什么?

  五、课堂作业:练习十九第2、3题。

  课后反思:

  视觉冲击波

  随着圣诞节的临近,美丽的对称图形——圣诞树给今天的数学课堂带来了一丝节日的气息。这美丽的图案会给数学课带来什么呢?

  1、纷繁数据的视觉冲击波

  教材97页第4题在仅仅只有12*方厘米的图示*出现16个数据,可谓是场数据“盛宴”。这些纷繁的数据造成的强力视觉冲击波使学生们个个头昏眼花。虽然大家从图中清晰可辨圣诞树的面积被分成就是求三角形、两个梯形和一个长方形面积,但在实际求组合图形面积过程中他们就是被这些数据“缠绕”,无法“解脱”。全班在规定的时间内仅5人列式计算正确。

  冲击波主要干扰到所有图形底的长度。无论是三角形的底,还是梯形的上下底都是学生易混易错之处。看来下次再教时,可利用不同颜色的彩笔勾画不同的图形,这样不仅能增强视觉效果,而且还能起到一定的辅助作用。

  2、图案“海洋”的视觉冲击波

  第4题第2小题与练习第3题要求不同。第3题只要求出“大约”结果即可,而第4题却不能简单地用手工纸的面积除以小树的面积,它需要考虑实际的排列情况。教学伊始,我是通过画简单示意图的方式带领学生通过逻辑推理来解决。大家共想到两种剪法:一种是将圣诞树竖着依次排列共可剪5棵;另一种是将圣诞树横着依次排列,每排3棵,可剪2排,所以共可以剪6棵。在此基础再想有所突破就难了。此时,我顺势出示课前按标准尺寸剪好的“圣诞树”与手工纸框架图,请学生上台边展示并验证刚才的发现。通过实际操作许多学生都从第二种剪法找到突破口,“见缝插针”地将树的棵数由6提高到了8。喜悦的心情在同学们心中传播,“还能剪出更多树吗?”的想法一直萦绕在大家的脑中。

  学生中有人(魏紫瑞)指出按第3题的解法,这张纸大约可以剪出9棵这样的树。真的能行吗?《教学用书》中指明最多只能剪8棵呀!可这群孩子“明知山有虎,偏向虎山行”。不多久就有一名学生(王菁)最先“插树”成功。(如图)

  通过验证8+8+2+3=21厘米,这种摆放正好充分利用了纸的宽度,摆放成功。班上立即掌声雷动,这自发的掌声不仅仅是对她结果的充分肯定,更是对她敢于挑战权威精神的赞扬。同学们的研究热情此时达到沸点,一发不可收拾。9棵可行,那么10棵还能行吗?这时,我已经是欲罢不能。多名学生上台尝试后发现如果按正规摆法会“缺胳膊少腿”,但他们尝试将树斜着放在空隙中时再次成功。这次我无法通过计算来验证是否合理了。

  欣赏着图案“海洋”带来的视觉冲击,使我情不自禁地回味起同学们的精彩发现,我眼仍旧浮现出他们一张张成功后的笑脸,我深深地被这虽然色彩单调却凝聚着学生智慧的图案所折服。

多边形面积教学设计5

  教学要求:

  1.巩固*行四边形的面积计算公式,能比较熟练地运用*行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  3.培养同学们仔细、认真的学习习惯。

  教学重点:

  运用所学知识解答有关*行四边形面积的应用题。

  教具准备:

  投影器

  教学过程:

  一、基本练习

  1.口算。

  4.90.7 5.4+2.6 40.25 0.87-0.49

  530+270 3.50.2 542-98 612

  2.*行四边形的面积是什么?它是怎样推导出来的?

  3.口算下面各*行四边形的面积。

  (1)底12米,高7米;

  (2)高13分米,第6分米;

  (3)底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块*行四边形的麦地底长250米,高是78米,它的面积是多少*方米?

  (1)生独立列式解答,集体订正。

  (2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?该怎样计算?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:25078010000=1.95公顷,再求共收小麦多少千克:70001.95=13650千克

  (3)如果问题改为:一共可收小麦58500千克,*均每公顷可收小麦多少千克?又该怎样想?与(2)比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500(250781000)

  (4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,才能进入下一环节,否则就会出问题。

  2.练习第6题:下图中各*行四边形的面积相等吗?为什么?每个*行四边形的面积是多少?

  (1)你能找出图中的两个*行四边形吗?

  (2)它们的面积相等吗?为什么?

  (3)生计算每个*行四边形的面积。

  (4)你可以得出什么结论呢?(等底等高的*行四边形的面积相等。)

  3.练习第10题:已知一个*行四边形的面积和底,求高。

  分析与解:因为*行四边形的面积=底高,如果已知*行四边形的面积是28*方米,底是7米,求高就用面积除以底就可以了。


多边形的面积教学设计 (菁选5篇)(扩展2)

——多边形面积教学反思3篇

多边形面积教学反思1

  本节课对多边形面积计算的知识点进行了全面的整理和复习。把长方形,*行四边形,三角形,梯形的面积计算紧密联系起来。着重解决组合图形的面积计算。在整个教学过程中,我始终贯彻了以下几点:

  一、体现数学与实际生活的联系,将知识应用于生活实际。

  新课改强调“要使学生体会数学与自然及人类社会的密切联系,了解数学的价值,增强应用数学的意识。”在本节课中,我时刻提醒学生注意数学知识与日常生活的联系,激发学生运用数学知识探索和解决实际问题的强烈欲望,既显得亲切自然,也为整理复习的开展创设新的情境。

  二、加强合作交流的意识,在合作中学习,在交流中体验快乐。

  在课程设计中,充分发挥学生的主动性,创造尽可能多的机会让学生展示自己学习的收获和聪明才智。既可以是独立的讲解,也可以是同伴的合作,或者是互相的提问,答辩,质疑。所以,我安排后进生,交流基础知识的回顾;让中等生进行复习整理提高;到实践与应用时,充分发挥优等生的优势,辨论用多种方法合理解题。整个过程中,始终让学生通过多种形式的交流,来揭示知识之间的联系,认识转化迁移等数学思想。

  三、突破难点重点,完成单元既定目标。

  组合图形面积计算是长方形、正方形,*行四边形,三角形与梯形的面积计算知识的发展,也是日常生活中经常需要解决的问题。在教学过程中,让学生自主解决组合图形面积计算的问题。再让学生动手操作,自主探究如何使用组合图形,转化为己学过的基本图形的过程中,首先让学生把这个图形,分解成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。在这个环节中,学生基本上都能够运用分割法或添补法把组合图形转化为所学过的`基本图形。但在展示学生分法时,我忘记了将在巡堂时发现的个别学生,由于找不到相关条件,无法计算图形面积也进行展示和集体讨论,这是不足的地方。学生汇报了不同的分法后,就让他们用自己喜欢的方法进行图形的面积计算,然后让学生展示汇报,从中小结,用哪种分割法或添补法计算这个组合图形的面积更简单。这个环节花的时间比较多,跟前面的环节类似,结果导致后面的时间很紧,因此在今后教学中应多注意教学环节之间的内容设计,把握重点,尽量紧凑,及时发现问题和做出反馈。

  当然,课堂上还存在一些不足。例如,对于有些学生表现好,能够正确地进行评价。而对于有些学生的亮点没有及时发现,评价不到位。且课堂纪律的组织,也有些欠缺。这些有待于自己在今后教学中,不断学习和探索。我深知:教师应该是用教材,而不是学教材,应引导学生走出课本,激活他们的创造性思维,使学生向多元化发展,让学生真正学到有价值的数学,获得必需的数学。

多边形面积教学反思2

  首先要感谢领导对我的信任,将这一重要的任务交给我。在备课之前,我认真学习并研究了刘所长亲自执教的三个视频,通过学习我个人认为这种“学帮理练”的上课模式,也就是尝试教学法的另一种诠释,它的理论核心是“先试后导”,让学生自主学习,合作探究。本着这种理解,我说一说对我这节课的一个思考:

  本节课的重点是:探究并掌握多边形面积的计算方法

  本节课的难点是:根据已知条件把多边形分解成几个基本图形。

  教学设计:

  1、复习旧知。多边形面积需要在学生已有的知识基础上进行,设计复习基本图形的面积为新授内容做好知识铺垫。

  2、展示生活中的多边形,通过找一找由几个基本图形组成,使学生认识到多边形可以分成熟悉的基本图形;再动手分一分,是使学生在此对多边形的组成产生认识,也为下面计算做好铺垫。

  3、本节课不是要教会学生求多边形的面积,而是让学生体会到求多边形面积的方法。因此出示例题,让学生自己动手画一画,算一算,使每个学生都参与到教学活动中,学生的知识背景不同,肯定会有多种方法,在交流中使学生体会解题方法的多样化;再通过2个练习题,使学生在操作中领悟方法与步骤,最后在学生独立尝试计算、相互分享的基础上总结方法。

  上完这一节课,细细回想还存在这些问题:

  1、在第一环节中展示学生的作品时,浪费了一部分时间,反映出自己对上课节奏把握的不准确,安排不得当,今后还需要严格要求自己,在备课中队对每一个字、每一句话都要细细斟酌。

  2、在展示交流这一环节时,只是展示了成功的作品,在备课时还记得,要搜集由于找不到相关条件无法计算图型面积的作品进行展示,通过对比让学生知道分图形也是有要求的,并且要根据已知的条件进行。

  3、在每个图形结束后,在学生体会多种方法的基础上,应该让学生进行比较,进行方法的优化,选择最好、最简单的方法。由于前面浪费了时间而没有进行,这是一个失误。

  4、自己的教学语言,学生操作的方式以及汇报的形式,都需要在今后的教学中进一步加以完善。

多边形面积教学反思3

  第五单元是《多边形的面积》,学生学起来饶有兴致。原因就是他们可以不必正襟危坐,完全可以畅所欲言,此时,他们的大脑好像被激活了一样,双手也变得那般灵活。整节课充满着无限生机。这样的课就这样持续着,包括学年的“一课三讲”,包括“区域教研”。学生喜欢上这样的课,我想可能有以下几个原因:

  1、学生真正成了课堂的主人

  苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”无论是*行四边形的面积还是三角形的面积教师都引导学生自主探究,鼓励学生大胆猜想。学生本来就很爱动手实践,当他们的主观能动性被充分调动,所发挥出来的潜力是无法估量的。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,所以在推导*行四边形面积时,有很多同学都想出了三四种方法(剪拼法、拼组法、折叠法等)转化成以前学习过的图形----长方形,并能够加以有效的验证。在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……

  2、重视学生的提问

  问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。听了这几节课,教师都精心设计了具有探索性的问题,比如:“*行四边形面积该怎样求?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出*行四边形的面积?”“怎样用转化的方法把*行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。因此学习效果也很显著。


多边形的面积教学设计 (菁选5篇)(扩展3)

——《多边形的面积》教学反思3篇

《多边形的面积》教学反思1

  《多边形的面积》这单元教学内容包括四部分:*行四边形的面积,三角形的面积,梯形的面积和组合图形的面积。

  教学时要注重让学生经历面积公式的推导过程,让学生亲自经历思索、剪、拼、摆的操作活动。在思维训练上注重渗透“转化”思想,引领学生运用“转化”的方法,通过对比探究图形与转化后图形间有什么关系,从而得出图形面积计算的方法。

  同时也要注重同一个图形不同的推导方法,像梯形的面积计算公式,除了可以用两个完全一样的梯形拼成一个*行四边形,其中一个梯形的面积是这个*行四边形面积的一半,我引导学生思索另外的推导方法。有的学生想出了可以沿对角线连接,把梯形分成两个三角形,还有的同学想出了把梯形分成一个*行四边形和一个三角形等。这样多种方法的推导,开阔了学生的`思路,进一步巩固了“转化”的思想。

  对于组合图形面积的计算,我则渗透了两种思维:一是分割法,将组合图形分成若干个已会计算面积的单一图形,这几个单一图形面积总和便是这个组合图形面积;二是添补法,根据图形特征将这个组合图形补成已学过的一个单一大图形,用这个大图形面积减去补充部分的图形面积便是原组合图形面积。

《多边形的面积》教学反思2

  本单元的主要教学内容包括:*行四边形的面积、三角形的面积、梯形的面积以及组合图形的面积。多边形面积的计算是在学生学习了图形的*移与旋转,掌握了这些*面图形的特征,以及长方形,正方形面积计算公式的基础上进行教学的。

  回顾08学年五年级学生学习本章时,学生的问题主要有:

  1、学生多边形面积公式的推导过程表达不清。课堂上每一个多边形面积公式的推导过程都是比较清晰的,无论是把*行四边形转化成长方形,还是把两个完全相同的三角形(或梯形)拼成*行四边形,从操作、比较,到发现转化前后图形之间的联系,最后得出计算公式,整个过程环节分明,条理清楚,学生都能很快掌握课堂上所学的内容。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程模糊,表达不清。

  2、部分学生不会分辨底、高(不能正确画出高),进行组合图形面积计算时候,不能很好利用*行四边形对边相等、不能创造性地通过虚线清晰地把图形进行分解,从而引起计算错误。

  3、审题不清,经常不注意单位的异同,面积计算结果经常用长度单位。

  为了有效地解决类似问题,我主要采取了以下措施:

  1、重视动手操作、观察与交流汇报

  本单元面积公式的推导都是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本单元教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,却忌由教师带着做。

  2、引导学生探究,渗透“转化”思想。

  本单元面积的推导都采用了转化的方法。在本单元的教学中,以学生的探究活动为主要形式,教师加强指导和引导。通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法。利用讨论和交流等形式,要求学生把自己操作——转化——推导的过程叙述出来,以发展学生的思维和表达能力。

  3、注意培养学生用多种策略解决问题的意识和能力。

  运用转化的方法推导面积计算公式和计算多边形面积,可以有多种途径和方法。教师要鼓励学生从不同的途径和角度去思考和探索解决问题。引导学生通过观察,作虚线等方法,清晰地认识一个简单图形、组合图形的构成,并能正确地进行计算。

  4、在教学中培养审题习惯、检查习惯等等

  学生出现审题不清,单位出错,原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯,并强调学生完成计算后,应该对答案和单位进行检查,从而杜绝不写单位和写错单位的不良行为。

《多边形的面积》教学反思3

  《多边形的面积》这单元教学内容包括四部分:*行四边形的面积,三角形的面积,梯形的面积和组合图形的面积。

  教学时要注重让学生经历面积公式的推导过程,让学生亲自经历思索、剪、拼、摆的操作活动。在思维训练上注重渗透“转化”思想,引领学生运用“转化”的方法,通过对比探究图形与转化后图形间有什么关系,从而得出图形面积计算的方法。

  同时也要注重同一个图形不同的推导方法,像梯形的面积计算公式,除了可以用两个完全一样的梯形拼成一个*行四边形,其中一个梯形的面积是这个*行四边形面积的一半,我引导学生思索另外的推导方法。有的学生想出了可以沿对角线连接,把梯形分成两个三角形,还有的同学想出了把梯形分成一个*行四边形和一个三角形等。这样多种方法的推导,开阔了学生的思路,进一步巩固了“转化”的思想。

  对于组合图形面积的计算,我则渗透了两种思维:一是分割法,将组合图形分成若干个已会计算面积的单一图形,这几个单一图形面积总和便是这个组合图形面积;二是添补法,根据图形特征将这个组合图形补成已学过的一个单一大图形,用这个大图形面积减去补充部分的图形面积便是原组合图形面积。


多边形的面积教学设计 (菁选5篇)(扩展4)

——三角形的面积教学设计10篇

三角形的面积教学设计1

  教学内容:三角形的面积第84-85页

  教学目标:

  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

  2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  3、培养学生的创新意识和合作精神。

  教学重点:

  理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:

  在转化中发现内在联系及推导说理。

  学具准备:

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个*行四边形。红领巾等。

  教学过程

  一、复习导入:

  1、复习:想一想,*行四边形的面积怎样计算?这个公式是怎么推导出来的?

  指名说一说,师可再现推导过程。

  2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

  二、探究三角形的面积公式

  1.启发提问:你能否依照*行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  2.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和*行四边形,每个直角三角形的面积与拼成的*行四边形的面积有什么关系?

  3.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、*移)

  教师提问:每个三角形的面积与拼成的*行四边形的面积有什么关系?

  4.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  5.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的*行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  6、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个*行四边形。

  ②每个三角形的面积等于拼成的*行四边形面积的一半。(同时板书)

  ③这个*行四边形的底等于三角形的底。(同时板书)

  ④这个*行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

  板书:三角形面积=底×高÷2

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  7.教学例1

  红领巾的底是100cm,高33cm,它的面积是多少*方厘米?

  1.由学生独立解答.

  2.订正答案(教师板书)

  三、总结:

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?

  四、反馈练习

  计算下面每个三角形的面积.

  1.底是4.2米,高是2米;

  2.底是3分米,高是1.3分米;

  (三)判断

  一个三角形的底和高是4厘米,它的面积就是16*方厘米。()

  2、等底等高的两个三角形,面积一定相等。()

  3、两个三角形一定可以拼成一个*行四边形。()

  4、三角形的底是3分米,高是20厘米,它的面积是30*方厘米。()

  板书设计

  三角形的面积

  *行四边形的面积=底×高,

  三角形面积=拼成的*行四边形的一半,100×33÷2=1650(cm)

  三角形面积=底×高÷2

  S=ah÷2

三角形的面积教学设计2

  教材分析

  本节内容是在学生充分认识了三角形的特征以及掌握了长方形、*行四边形面积计算的基础上安排的。其推导方法与*行四边形面积公式的推导方法有相通之处。同时本课也是学习梯形、组合图形面积的基础,在实际生活中这部分的应用也非常广泛,所以本课内容的学习是很重要的。

  学情分析

  学生在掌握了正方形和长方形面积的基础之上才能学好本课,让学生动手操作去探索数学的奥秘。

  教学目标

  知识与技能目标:使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。

  过程与方法目标:使学生通过操作和对图形的观察、比较、发展空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  情感态度与价值观:在探索学习过程中,培养学生的实践能力、探索意识、合作精神与创新精神;同时使他们获得积极、成功的情感体验。

  教学重点和难点

  1、掌握三角形面积的计算公式,会运用公式计算三角形的面积。

  2、理解三角形面积计算公式的推导方法。

  教学过程

  一、创设情境,导入新课

  1、同学们,上一节课我们学习了*行四边形面积的计算你还能记住求*行四边形面积的公式吗?(S=a×b)那么,这个公式是怎样推导出来的呢?

  2、同学们,请大家自己看看胸前的红领巾,知道红领巾是什么形状的吗?(三角形)如果叫你们裁一条红领巾,你知道要用多大的布吗?(求三角形面积)。要想知道这条红领巾的.面积时多少,就要用到三角形的面积公式,今天这节课我们就来研究三角形面积的计算方法。

  板书:三角形的面积

  二、讲授新课

  1、上节课,我们在研究*行四边形的面积公式时,是把*行四边形转化成我们学过的方法形或正方形来研究的。今天,我们能不能将三角形也转化成我们已经学过的图形,从而推导出三角形的面积公式呢?

  2、提问:请同学们回想一下,三角形按角分类可以分为几类?分别是?

  (锐角三角形、直角三角形、钝角三角形)

  3、我为大家准备了这些三角形,请你们自己试图去拼一拼,看你能发现什么?

  4、拼图推导公式,按三角形类别的不同,可以有以下几种方法

  ⑴、两个完全一样的锐角三角形

  提问:两个完全一样的锐角三角形能拼成了什么图形?你发现了什么?

  两个完全一样的锐角三角形拼成一个*行四边形,*行四边形的底相当于三角形的底,*行四边形的高相当于三角形的高,*行四边形的面积相当于三角形面积的2倍,因为*行四边形的面积等于底乘以高,所以三角形的面积等于底乘以高除以2。

  老师把图形贴在黑板上,再请说推导过程,并板书:

  *行四边形的面积=底×高

  三角形的面积=底×高÷2

  ⑵、两个完全一样的钝角三角形

  两个完全一样的钝角三角形拼成一个*行四边形

  ⑶、两个完全一样的直角三角形

  两个完全一样的直角三角形拼成一个长方形。

  5、小结:我们用两个完全一样的三角形,拼成了*行四边形或长方形,利用*行四边形或长方形的面积公式,推导出了三角形的面积公式。如果用字母a表示三角形的底,h表示三角形的高,s表示三角形的面积,你能用字母表示出三角形的面积公式吗?

  板书:s=ah÷2

  三、巩固练习

  5、练习:出示教材第85页的例2,请学生独立完成,指明板演。

  6、学生独立完成教材第85页的“做一做”及第86页的练习十六的第1、2题。

  四、课堂小结

  提问:这节课我们探索了那些知识?学到了些什么?

  这节课我们主要通过用两个完全一样的三角形,拼成了*行四边形或长方形,利用*行四边形或长方形的面积公式,推导出了三角形的面积公式。从而得到三角形的面积等于底乘以高除以2。这种“转化”的数学方法是数学研究的重要手段,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。

  五、思维拓展

  教材第87页第6题。

  六、布置作业

  教材第87页第3题。

三角形的面积教学设计3

  教学目标:

  1.知识与技能:

  (1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  (2)培养学生应用已有知识解决新问题的能力。

  2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:

  探索并掌握三角形面积计算公式,能正确计算三角形的面积。

  教学难点:

  三角形面积公式的推导过程。

  教学关键:

  让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。

  教具准备:

  红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。

  学具准备:

  每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。

  教学过程:

  一、创设情境,揭示课题

  师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗? (把红领巾展开贴在黑板上)

  教师提出问题:

  ⑴红领巾是什么形状的?(三角形)。

  ⑵你会算三角形的面积吗?

  师:这节课我们一起来学习探索三角形面积的计算方法。

  板书:三角形的面积

  [设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]

  二、探索新知

  1.寻找思路:(出示一个长方形)

  师:(1)长方形面积怎样计算?

  (2)怎样可以把这个长方形*均分成两份?

  有三种方法:

  方法一:方法二: 方法三:

  师:方法三中把长方形*均分成两个三角形,大小有什么关系?(完全一样)

  每个三角形面积与原长方形的面积有什么关系?

  [设计意图:通过把长方形*均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]

  生:长方形的面积=长×宽

  生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。

  板书:三角形的面积=底×高÷2(直角三角形)

  师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一齐来探讨。上节课,我们把*行四边形转化成长方形来探索*行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?(挂出课本84页主题图让学生观察、引发思考)

  接着出示思考题:

  (1)将三角形转化成学过的什么图形?

  (2)每个三角形与转化后的图形有什么关系?

  [设计意图:学生已经学习了*行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的图形来求它的面积呢?在讲授公式来由之前,以动手把长方形*分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]

  2.分组操作、讨论,合作学习。

三角形的面积教学设计4

  教学内容:

  人教版义务教育课程标准实验教科书五年级上册第84—86页.

  教学目标:

  1.知识与技能:

  (1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题.

  (2)培养学生应用已有知识解决新问题的能力.

  2.过程与方法:使学生经历操作,观察,讨论,归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力.

  3.情感,态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣.

  教学重点:

  探索并掌握三角形面积计算公式,能正确计算三角形的面积.

  教学难点:

  三角形面积公式的探索过程.

  教学关键:

  让学生经历操作,合作交流,归纳发现和抽象公式的过程.

  教具准备:

  课件,*行四边形纸片,两个完全一样的三角形各三组,剪刀等.

  学具准备:

  每个小组至少准备完全一样的直角三角形,锐角三角形,钝角三角形各两个,一个*行四边形,剪刀.

  教学过程:

  创设情境,揭示课题

  师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题

  (屏幕出示红领巾图)

  师:同学们,红领巾是什么形状的(三角形)你会算三角形的面积吗这节课我们一起研究,探索这个问题.(板书:三角形面积的计算)

  [设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将"教"的目标转化为学生"学"的目标.]

  二,探索交流,归纳新知

  1.寻找思路:(出示一个*行四边形)

  师:(1)*行四边形面积怎样计算(板书:*行四边形面积=底×高)

  (2)观察:沿*行四边形对角线剪开成两个三角形.

  师:两个三角形的形状,大小有什么关系(完全一样)

  三角形面积与原*行四边形的面积有什么关系

  [设计意图:这一剪多问,学生在观察的基础上通过与*行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]

  师:你想用什么办法探索三角形面积的计算方法

  (指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定,评价鼓励.)

  师:上节课,我们把*行四边形转化成长方形来探索*行四边形面积的计算公式的.大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢

  (屏幕出示课本84页主题图让学生观察,引发思考)

  接着出示思考题:

  将三角形转化成学过的什么图形

  每个三角形与转化后的图形有什么关系

  [设计意图:学生由于有*行四边形面积公式的推导经验,必然会产生:能不能把三角形也转化成已学过的图形来求它的面积呢从而让学生自己找到新旧知识间的联系,使旧知识成为新知识的铺垫.]

  2.分组实验,合作学习(音乐)

  (1)提出操作和探究要求.

  让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼,摆一摆或剪拼.

  屏幕出示讨论提纲:

  ①用两个完全一样的三角形摆拼,能拼出什么图形

  ②拼出的图形与原来三角形有什么联系

  (2)学生以小组为单位进行操作和讨论.

  [设计意图:这里,根据学生"学"的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会.]

  教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生:你是怎样拼的能说一说你的拼法吗(若学困生含糊的,动画显示一个作好高的三角形,移出一个与它同样大小的三角形,再把这个三角形旋转,移动,和下一个三角形拼成一个*行四边形.如图,让学困生模仿练习)

三角形的面积教学设计5

  教学目标:

  1 .知识与技能:

  (1 )探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  (2 )培养学生应用已有知识解决新问题的能力。

  2 .过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3 .情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点: 探索并掌握三角形面积计算公式,能正确计算三角形的面积。

  教学难点: 三角形面积公式的推导过程。

  教学关键:让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。

  教具准备: 红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。

  学具准备: 每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。

  教学过程:

  一、创设情境,揭示课题

  师:今天老师有什么不同? 老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗?(把红领巾展开贴在黑板上)

  教师提出问题:

  ⑴ 红领巾是什么形状的?(三角形)。

  ⑵ 你会算三角形的面积吗?

  师:这节课我们一起来学习探索三角形面积的计算方法。板书:三角形的面积

  [ 设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“ 教学活动” 转化为“ 学习活动” 。]

  3 .讨论与归纳公式

  (1 )讨论:(小黑板出示问题)

  ①三角形的底和高与*行四边形的底和高有什么关系?

  ②怎样求三角形的面积?

  ③你能归纳出三角形的面积计算公式吗?

  [ 设计意图: 借助图形直观性,教师指明讨论的部分是三角形的底和高与*行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]

  二、应用新知,解决问题

  师:现在同学们能帮老师解决问题了吗?

  1 .计算一条红领巾的面积。

  师:你能估算出这条红领巾的底和高各是多少吗?

  师:这条红领巾的底是100cm, 高是33cm ,你能计算出它的面积是多少吗?

  学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。

  师:计算三角形的面积,应注意什么地方?(强调“÷2” 和“ 底和高要对应” 这两个重点、难点。)

  2 .独立完成P85 做一做。

  学生板演,教师点评。

  [设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]

  三、深化理解、应用拓展

  课本86 页的练习第1 题。(课件出示)

  师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少*方分米?

  (让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)

  [ 设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]

  四、总结

  师:今天这节课,我们主要学习了什么知识?你有什么收获?

  (小出示)让学生说一说图意:

  师:很好!今天我们通过分“ 四人小组” 动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的*行四边形推导出了三角形面积的计算公式,这种“ 转化” 的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。

  [ 设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]

  五、课外作业

  课本第87 页“ 练习十六” 第5 、6 、7 题。

  教学反思:

  本节内容是在*行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来 “ 教学活动” 转化为“ 学习活动”, 引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。

  1、小组结合动手操作

  在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个*行四边形,并比较每个三角形与拼成的*行四边形各部分间的关系,同时在操作中向学生渗透旋转、*移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。

  2、引导学生发现问题、思考问题,培养合作精神

  在这节课中,探讨*行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“ 除以2” 是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“ 除以2” 的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。

  3、应用公式解决生活中的问题

  新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。

  此外,在这节课的教学过程中,我发现了自己*时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识, 从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。

三角形的面积教学设计6

  教学内容:三角形面积计算的练习(练习十八5~10题)

  教学要求:

  1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。

  2.能运用公式解答有关的实际问题。

  3.养成良好的审题、检验的习惯,提供正确率。

  教学重点:运用所学知识,正确解答有关三角形面积的应用题。

  教具准备:展示台

  教学过程:

  一、基本练习

  1.填空。

  (1)三角形的面积=,用字母表示是。

  为什么公式中有一个“÷2”?

  (2)一个三角形与一个*行四边形等底等高,*行四边形的底是2.8米,高是1.5米。三角形的面积是()*方米,*行四边形的面积是()*方米。

  2、练习十六2题

  二、指导练习

  1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相*行。)你还能画出和它们面积相等的三角形吗?

  ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?

  ⑵看看图中哪两个三角形的面积相等?为什么?

  ⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来

  2.练习十六第7题

  (1)让学生尝试分。

  (2)展示学生的作业

  可能有:a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。

  b、也可把原三角形先二等分,再把每一份分别二等分。

  3、练习十六9*

  让学生抓住涂色的三角形的底只有*行四边形底的一半,它的高和*行四边形的高相等,*行四边形的面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4

  4.练习十六第3题:已知一个三角形的面积和底,求高?

  让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了*行四边形的面积。

  三、课堂练习

  练习十六第8*题。

  四、作业

  练习十六第4、5题。

  课后记:

三角形的面积教学设计7

  教学内容:

  人教版义务教育课程标准实验教科书五年级上册第84—86页。

  教材分析:

  三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础、《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形,*行四边形和梯形的面积公式、学生在学习三角形面积的计算方法之前,已经亲身经历了*行四边形面积计算公式的推导过程,当学生面临三角形面积计算公式的推导过程时,可以借鉴前面"转化"的思想,且为今后逐渐形成较强的探索能力打下较为扎实的基础、

  教学目标:

  1、知识与技能:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程

  2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

  教学难点:

  三角形面积公式的探索过程。

  教具准备:

  课件、*行四边形纸片、两个完全一样的三角形各三组、剪刀等。

  学具准备:

  每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个*行四边形,剪刀。

  教学过程

  一、复习旧知,导入新课。

  1、我们学过求哪些图形的面积,计算公式是什么?

  2、我们学校内有一*行四边形的花坛,底是5米,高是3米,学校领导要把这个花坛*均分成两份,分别种上不同颜色的花,该怎样分?每一块的面积是多少?请同学设计一下。

  3、同学们,学校要为学校开学典礼准备30条红领巾,大队辅导员想请大家帮忙,算一算,需要多少布料?你们愿意吗?该怎样来计算呢?

  师:是的,要先计算一条红领巾的面积,那么红领巾是什么形状的?你会计算它的面积吗?今天我们就来学习计算三角形的面积。板书:三角形的面积。

  二、动手操作,探求新知。

  1、 猜一猜。找关系

  师:1、同学们,长方形的面积跟它的什么有关系?*行四边形的面积跟它的什么有关系?

  生:和它的底和高有关。

  2、那么,猜一猜,三角形的面积可能跟它的什么有关系呢?(学生可能说边、底、高)那么怎样来验证我们的判断呢?

  2、 想一想。找关系

  师:想一想,我们在推导*行四边形的面积时,用的是什么方法?那么,可不可以也用转化法把三角形转化成我们会求面积的图形呢?

  3、 拼一拼,摆一摆,比一比。找关系

  师:请同学们拿出准备好的三角形,按照你的想法,和小组内同学一起拼一拼,摆一摆,折一折看可以把它转化成哪些我们会求面积的图形。

  学生小组合作,拼摆图形。教师巡视,帮助学困生拼摆。

  汇报。可能摆出正方形,长方形,*行四边形,

  思考,这些图形有什么共同点?(都是*行四边形。)现在,你又有什么发现?

  归纳:两个完全相同的三角形,可以拼出一个*行四边形。

  师:那么,我们拼出的*行四边形、跟所用的三角形有没有关系呢?有什么关系呢?

  引导学生答出,*行四边形的面积是三角形面积的2倍。板书:三角形的面积=*行四边形的面积÷2,那么,还有没有其它的关系呢?

  4、 画一画,算一算。找关系,得结论。

  师:请同学们画出*行四边形的一条高,你发现了什么?

  生:*行四边形的高也是三角形的高,底也是三角形的底。

  师:那么,我们刚刚得出的结论还可以怎样写?

  三角形的面积=底×高÷2

  用字母表示三角形的面积。

  5、 应用公式,解决问题。

  现在我们再来解决大队辅导员老师的问题吧。学生可能会束手无措,面面相觑于是,教师趁机疑惑不解地问:你们怎么还不解决问题啊?让学生自己说出,需要红领巾的底和高。

  教师出示完整题目:一条红领巾的底是100厘米,高是33厘米,做30条这样的红领巾需要多少布料?

  学生独立计算,集体订正。

  三、练习巩固。

  1、 独立完成85页做一做。

  2、 完成86页练习的1、题。

  3、 完成86页练习的3题。

  4、判断下列说法是否正确。

  (1)三角形面积是*行四边形面积的一半。( )

  (2)一个三角形面积为20*方米,与它等底等高*行四边形面积是40*方米。( )

  (3)一个三角形的底和高是4厘米,它的面积就是16*方厘米。( )

  (4)等底等高的两个三角形,面积一定相等。( )

  (5)两个三角形一定可以拼成一个*行四边形。( )

  5、求右图三角形面积的正确算式是( )

  ①3×2÷2 ②6×2÷2

  ③6×3÷2 ④6×4÷2

  6、 学校准备在校门出口处两旁各建一块三角形交通警示标志牌,底是8分米,高是7分米,请帮忙计算需要多大面积的材料。(引导学生思考“两旁”的意思)。

  四、拓展提高:

  1、这节课,你有什么收获?还有那些不懂的地方?

  2、如果只用一个三角形,你能通过剪,拼等方法推出三角形公式吗?

  五、板书设计:

  三角形的面积

  三角形的面积=*行四边形的面积÷2

  三角形的面积=底×高÷2

  S=ah÷2

三角形的面积教学设计8

  教材简析:

  “三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的*行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。

  教学内容:

  苏教版标准实验教科书《数学》五年级上册P15~P16的内容,三角形的面积。

  教学目标:

  1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;

  2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

  3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重、难点:

  重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。

  教、学具准备:

  CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。

  教学过程:

  一、创设情境、导入新课

  1、提出问题。

  师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?

  2、揭示课题。

  师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)

  二、操作“转化”,推导公式

  1、寻找思路。

  师:是的,我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算*行四边形的面积,后来我们通过什么方法推导出了*行四边形的面积计算公式的呢?

  师:对,我们用“割补”的方法把*行四边形“转化”(板书:转化)成了一个长方形,这样推导出了*行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?

  师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?

  [应变预设:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。]

  2、动手“转化”。

  师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。

  小组合作拼组图形,教师巡视指导。

  [应变预设:可能有些同学不会拼组,教师可指导他们用旋转、*移等方法,把两个完全一样的三角形拼成一个*行四边形或一个长方形。]

  师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?

  [应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]

  师:同学们,为什么有些小组拼成了一个*行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?

  [评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]

  3、尝试计算。

  师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个*行四边形或一个长方形。现在请同学们看图1。

  师:这个*行四边形就是由两个完全相同的三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?

  [评析:引导学生说出拼成的*行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]

  师:知道了*行四边形的底和高,你们能求出所拼成的*行四边形的面积吗?算一算吧。

  师:算完了吗?它的面积是多大?

  师:我们知道,这个*行四边形是用两个完全一样的三角形拼成的,*行四边形的面积是20*方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。

  [应变预设:在设法求三角形的面积时,可能有部分同学不明白三角形的面积和*行四边形面积之间的关系,不会计算。这时教师应引导学生明确每个三角形的面积是拼成的*行四边形面积的一半,计算三角形的面积可用*行四边形的面积除以2得出。]

  师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。

  师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。

  [应变预设:学生可能不会计算,教师可以引导学生观察,图中的虚线三角形,和蓝色三角形是完全一样的,它们也拼成了一个*行四边形。使学生明确3×2是这个*行四边形的面积,求这个三角形的面积还得除以2。]

  师:同学们,你们太棒了!又计算出了一个三角形的面积。再看屏幕,(课件出示,如下图)你们还能计算这个三角形(底6cm,高4cm)的面积吗?

  [评析:由清晰的由两个完全相同的三角形拼成的*行四边形,到由一实一虚的两个完全相同的三角形拼成的*行四边形,再到一个独立的三角形,面积计算逐步深入,层层推进,引导学生经历了由具象到抽象的过程,思维含量非常丰富。]

  4、推导公式。

  师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。

  [应变预设:大多数的学生可能会说出“三角形的面积=底×高÷2”。教师应给以充分的肯定:你们推导出了三角形面积的计算公式!再引导学生说出推导的过程。]

  5、理解公式。

  师:同学们,老师有点不明白,为什么你们写这个公式时用三角形的底乘高呢?“底×高”表示什么意思呢?为什么还要“÷2”呢?

  [评析:通过请学生帮助老师解困惑,加深学生对三角形面积计算公式含义的理解:“底×高”表示用两个完全一样的三角形拼成的*行四边形的面积;因为三角形的面积是拼成*行四边形面积的一半,所以要“÷2”。这样既突破了教学难点,更加深了

  学生对三角形面积计算公式的理解。]

  6、用字母表示三角形的面积公式。

  师:同学们,如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。

  [评析:拼一拼、算一算、说一说、写一写……不知不觉中,同学们自己推导出了三角形的面积计算公式。学生自然地成为了学习的主人。]

  师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本P85页的数学常识。)

  [评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]

  三、应用公式,解决问题

  师:同学们,我们已经推导出了三角形的面积计算公式,现在我们就用三角形的面积计算公式解决一些实际的问题。这是刚才看到的那条红领巾,同学们,你们知道怎样才能求出做一条这样的红领巾要用多少红布吗?

  师:对,要求做一条红领巾要用多少红布,实际是求这条红领巾的面积是多少?而要求这条红领巾的面积是多少?必须了解哪些数据呢?

  师:那就请大家动手量一量它的底和高吧。

  [评析:这里并没有直接给出红领巾的底和高,需要学生共同合作实际测量,培养了学生解决实际问题的能力。]

  师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?

  [应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]

  四、联系生活,适当拓展

  师:同学们,你们认识这些道路交通警示标志吗?(课件出示下面这些道路交通警示标志。)知道它们的具体含义吗?

  师:交通标志对于维护交通安全有着重要的意义和作用。同学们,这些交通标志是什么形状的?

  师:对,它们都是三角形的。(课件出示其中一个三角形标志的底和高,如下图)请大家算一算,这个标志牌(底9dm,高7dm)的面积大约是多少?

  [应变预设:指导运用公式进行正确的计算,,然后集体订正。]

  师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高1.5厘米;图3:底2.5厘米,高2.8厘米)看谁算得又对又快!

  四、全课总结,反思体验

  教师:这节课你们学习了什么?有哪些收获?

  [总评:这节课教师注重从学生已有的知识经验出发,并引导学生将“转化”的思想迁移到新知识的学习中,动手操作推导出三角形的面积公式,亲身经历了数学知识的形成过程,增强了学生学习数学的兴趣。整一节课,教师尽量把时间和空间让给学生,组织他们动手实践,引导他们自主探索,参与他们的合作交流,使学生真正成为了学习的主人。]

三角形的面积教学设计9

  教学内容:三角形的面积第84-85页

  教学目标:

  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

  2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  3、培养学生的创新意识和合作精神。

  教学重点:

  理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:

  在转化中发现内在联系及推导说理。

  学具准备:

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个*行四边形。红领巾等。

  教学过程

  复习导入:

  1、复习:想一想,*行四边形的面积怎样计算?这个公式是怎么推导出来的?

  指名说一说,师可再现推导过程。

  2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

  二、探究三角形的面积公式.

  1.启发提问:你能否依照*行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  2.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和*行四边形,每个直角三角形的面积与拼成的*行 四边形的面积有什么关系?

  3.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、*移)

  教师提问:每个三角形的面积与拼成的*行四边形的面积有什么关系?

  4.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  5.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的*行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  6、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个*行四边形。

  ②每个三角形的面积等于拼成的*行四边形面积的一半。(同时板书)

  ③这个*行四边形的底等于三角形的底。(同时板书)

  ④这个*行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

  板书:三角形面积=底×高÷2

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  7.教学例1

  红领巾的底是100cm,高33cm,它的面积是多少*方厘米?

  1.由学生独立解答.

  2.订正答案(教师板书)

  三、总结:

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?

  四、反馈练习

  计算下面每个三角形的面积.

  1.底是4.2米,高是2米;

  2.底是3分米,高是1.3分米;

  (三) 判断

  一个三角形的底和高是4厘米,它的面积就是16*方厘米。( )

  2、等底等高的两个三角形,面积一定相等。 ( )

  3、两个三角形一定可以拼成一个*行四边形。 ( )

  4、三角形的底是3分米,高是20厘米,它的面积是30*方厘米。( )

  板书设计

  三角形的面积

  *行四边形的面积=底×高,

  三角形面积=拼成的*行四边形的一半, 100×33÷2=1650(cm)

  三角形面积=底×高÷2

  S=ah÷2

三角形的面积教学设计10

  教学内容:人教版义务教育课程标准实验教材小学数学五年级上册第84~85页。

  教学目标:

  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

  2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  3、培养学生的创新意识和合作精神。

  教学重点:三角形面积计算公式的推导过程

  教学难点:在转化中发现内在联系及推导说理。

  教、学具准备:多媒体课件,红领巾,学具(两个完全相同的锐角三角形、直角三角形、钝角三角形、任意三角形若干个)。工具(直尺、剪刀)。

  设计思路:

  本节课有以下几个特点:

  1、利用远程教育资源,通过多媒体课件复习旧知,激发学生的学习兴趣。在复习旧知时,单凭教师枯燥的提问,很难调动学生的兴趣。教学一开始,我利用远程教育资源,恰当地运用多媒体课件,直观动态地将旧知识展示在学生面前,以感染学生,为学习新知识作好铺垫。

  2、利用远程教育资源,通过多媒体课件突出重点,化解难点。本节课的重点是探索三角形面积计算公式的推导,如果只有教师的讲解、演示,很难使学生真正理解、掌握新知。因此,在教学中,我力求打破传统教学以传授知识为中心的弊端,精心设计以学生为主体的实践活动,充分利用远程教育资源,发挥多媒体的功能,通过“变色”、“闪烁”、“声音”等手段突出重点,解决难点,加深学生对新知识的理解,激活学生的创造思维,掌握学习方法,培养学生的学习能力。真正发挥学生的主体作用,体现新课程的理念。

  教学过程

  一、创境引新

  1、同学们,你们还记得怎样计算*行四边形的面积吗?(点击课件)

  这个公式是怎样推导出来的呢?

  电脑动态演示割拼的转化过程。

  形成板书:

  转化 找关系 推导

  学生看大屏幕,

  口答:s=ah

  学生口述*行四边形面积公式的推导过程。

  2、老师这里有一样东西,你想知道吗?(出示红领巾)红领巾是什么形状的?要知道做这条红领巾需要用多大的布,该怎么办?

  三角形的面积该怎样计算呢?这节课老师和大家一起研究、探索这个问题。(板书课题)

  生可能会说:求出它的面积。

  二、自主探索

  合作交流1、谈话启思。

  我们能不能利用前面学过的方法来探究三角形的面积呢?想一想,用任意两个三角形可以拼成什么图形,下面同学们利用桌上的学具拼一拼、摆一摆,看一看,能拼成什么图形?

  2、操作探索。

  (1)四人小组合作进行操作、探索。

  (2)小组汇报、交流、展示。

  学生可能会拼出以下图形:

  (3)课件演示拼出的各种图形。

  (4)设疑:

  这些图形中哪些图形的面积你会计算?

  通过操作,谁能告诉老师,什么样的两个三角形能拼成*行四边形?

  你能不能很快的把两个完全相同的三角形拼成*行四边形。

  老师有一种方法,能很快的将两个完全相同的三角形拼成*行四边形,想学吗?

  电脑演示转化的动态过程。

  (5)找关系。

  师:拼成的*行四边形与原三角形有什么关系?

  课件出示:

  a.拼得的*行四边形的底与原三角形的底有什么关系?

  b.拼得的*行四边形的高与原三角形的高有什么关系?

  c.其中一个三角形的面积与拼得的*行四边形的面积有什么关系?

  (6)汇报

  在学生回答的基础上师用电脑演示。

  (7)尝试推导说理。

  师:根据你们的发现,你能推导出三角形的面积计算公式吗?

  在学生的汇报中形成板书:

  三角形的面积=*行四边形的面积÷2

  底 × 高

  = 底× 高÷2

  师:如果用s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?

  完善板书:s=ah÷2

  学生口答:长方形、*行四边形。

  生:两个完全一样的三角形能拼成*行四边形。

  学生操作,感到不是很容易。

  学生观看转化过程。

  尝试旋转、*移的方法。

  小组讨论交流。

  小组派代表发言。

  学生讨论后回答,并说说自己是怎样推导的?

  学生发言。

  学生齐说:s=ah÷2

  3、探究用一个三角形进行割补转化推导。

  师:我们在推导*行四边形的面积公式时,运用了割补法,你能不能运用割补法将一个三角形转化成*行四边形?

  师:下面我们来观察电脑上是怎样操作的?(点击课件)

  师:同学们若有兴趣,课后可以继续探索不同的割补方法。

  小组合作探究,

  汇报交流。

  学生观看运用割补法将一个三角形转化成*行四边形过程。

  三、实践应用

  拓展提高

  1、(出示红领巾)这下你会计算这条红领巾的面积吗?计算它的面积要知道什么条件?

  你能估计一下它的底有多长吗?(课件出示红领巾)

  一条红领巾的面积是多少*方厘米?

  2、看图计算面积。

  3、你认识这些道路交通标志吗?谁来说说。

  (课件出示)

  师:我们学校处在交通繁忙的三路口,车辆较多。为了同学们的安全,交警叔叔想用铁皮做这样两个标志牌,(点击课件)

  你来帮他们算算需要多少铁皮?

  4、判断。

  (1)、一个三角形的底和高是4厘米,它的面积就是16*方厘米。()

  (2)、等底等高的两个三角形,面积一定相等。()

  (3)、两个三角形一定可以拼成一个*行四边形。()

  (4)、三角形的底是3分米,高是20厘米,它的面积是30*方厘米。()

  5、课下请同学们找一个三角形的实物进行测量,计算出它的面积。

  学生估计底的长度。

  学生独立完成,一人板演。做完后集体订正。

  学生口述列式。

  通过图3知道要用对应的底和高计算面积。

  学生说说自己认识交通标志。

  学生独立完成,然后交流。可能出现下面两种方法。

  方法一:s=ah÷2

  =7.8×9÷2

  =35.1

  35.1×2=70.2(*方分米)

  方法二:s=ah

  =7.8×9

  =70.2(*方分米)

  学生判断,并说明理由。

  四、评价体验

  通过这节课的学习,你一定有话想对同学们说,你最想说什么?(点击课件)

  学生之间互相评价。

  教学反思:

  1、利用远程教育资源,创设教学情景。

  利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、*行四边形面积计算的基础上学习的,其推导方法与*行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关*行四边形面积公式的课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。

  2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。

  数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成*行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、*移,能很快的拼成一个*行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、*移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的*行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。

  割补法是学习几何知识很重要的方法。在推导*行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、*移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成*行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水*有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。

  3、利用远程教育资源,提高学生应用新知识的能力。

  练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。

  总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。


多边形的面积教学设计 (菁选5篇)(扩展5)

——五年级数学多边形的面积教案10篇

五年级数学多边形的面积教案1

  学法指要

  1.有一块三角形菜地,底为160米,它比高的2倍少20米。菜地面积是多少*方米?

  思路分析:此题是求三角形面积的题目。求三角形的面积的关键是知道三角形的底和高。题目中底已经直接给出,而高没有直接给出。因此这题要想求出面积,必须先求出高。求高是求1倍量的,应先把160米补上20米后,正好对应2倍。因此高这样计算:(160+20)÷2=180÷2=90(米)。

  再求三角形菜地的面积,直接应用公式计算就可以了。

  解: (160+20)÷2

  =180÷2

  =90(米)

  160×90÷2

  =14400÷2

  =7(*方米)

  答:菜地的面积是7*方米。

  2.有一块梯形田,上底6米,比下底的一半少0.4米,高比上底多2米,求梯形田的面积是多少*方米?

  思路分析:这题的题目要求是求梯形的面积。求梯形的面积计算公式是S=(a+b)×h÷2,根据公式说明求梯形面积的关键是知道上底、下底和高的长度。

  观察已知条件,我们发现这个梯形的下底和高都没有直接给出,因此应先求出下底和高,再求面积。

  根据条件,求下底是求上底的一半少0.4的数是多少,列式是:

  6÷2-0.4=3-0.4=2.6米。

  根据条件,求高是求比上底多2的数是多少,列式是6+2=8(米)。

  最后求出梯形面积,直接公式计算就可以了。

  解: (1)6÷2-0.4=3-0.4=2.6(米)

  (2)6+2=8(米)

  (3)(6+2.6)×8÷2

  =8.6×8÷2

  =68.8÷2

  =34.4(*方米)

  答:梯形田的面积是34.4*方米。

  3.如图:梯形的面积是24*方分米,求梯形的下底是多少厘米?

  思路分析:这题已知梯形的面积和上底以及高,求下底的长度,是利用公式逆解的题。

  我们可以看出,由于两个完全一样的梯形能够拼成一个*行四边形,要计算梯形的下底,必须先把梯形面积乘以2还原成拼得的*行四边形的面积,*行四边形的高等于梯形的高,*行四边形的底等于梯形的上底和下底之和。这样,我们用拼得的*行四边形面积除以高就得出了梯形上底和下底之和,再减去梯形的上底,就算出了下底的长度。

  注意,这题中的高的单位名称、面积的单位名称与要求的下底单位不统一,应先统一单位,再计算。

  解: 24*方分米=2400*方厘米

  4分米=40厘米

  2400×2÷40-45

  =4800÷40-45

  =120-45

  =75(厘米)

  答:这个梯形的下底是75厘米。

  4.一个三角形的底是6厘米,面积是12*方厘米,和它等高的*行四边形的底是三角形底的2.5倍,求*行四边形的面积。

  思路分析:我们知道,求*行四边形的面积的关键是知道*行四边形的底和高,已知条件中指出,*行四边形的底是三角形底的2.5倍,而三角形的底题目中直接给出,用乘法就可直接求出*行四边形的底了。

  题目中又告诉我们三角形和*行四边形等高,因此,只要求出三角形的高就可以了。而求三角形的高又是利用公式逆解的题,这与梯形给出面积利用公式逆解题思路一样,只要先还原成拼得的*行四边形的面积,再算高就可以了。

  解: 12×2÷6

  =24÷6

  =4(厘米)

  6×2.5=15(厘米)

  15×4=60(*方厘米)

  答:*行四边形的面积是60*方厘米。

  5.求组合图形的面积。

  单位:厘米

  思路分析:要求这个组合图形的面积,要先做一条辅助线(如图)。

  这样就可以看出这个组合图形是一个梯形和一个长方形组合而成的。梯形的下底就是长方形的长,高就是45减35的差,只要利用梯形和长方形的面积公式就可以计算出这两个基本图形的面积,最后用加法就可求出组合图形的面积了。

  解: (1)梯形面积:

  (20+50)×(45-35)÷2

  =70×10÷2

  =350(*方厘米)

  (2)长方形面积:

  50×35=1750(*方厘米)

  (3)组合图形面积:

  350+1750=2100(*方厘米)

  答:这个组合图形的面积是2100*方厘米。

  6.小莉走一步的*均长度是55厘米。她从家走到新华书店的距离是1705米,要走多少步,才能走到?

  思路分析:这题是知道*均步长和两地间的距离,求步数的题目。由于这题的单位名称不统一,只要先统一单位,就能直接用两地距离除以*均步长就可以了。

  解法一: 1750米=175000厘米

  175000÷55=3100(步)

  解法二: 55厘米=0.55米

  1750÷0.55=3100(步)

  答:要走3100步才能走到。

  思维体操

  1.面积相等的两个三角形,第一个底长是40厘米,高是35厘米;第二个底长是70厘米,高是多少厘米?

  思路分析:这道题是求三角形的高,是利用公式逆解的题。题目中给出了两个三角形的面积相等,又直接给出了第一个三角形的底和高,这样就求出了第一个三角形的面积,这也就等于知道了第二个三角形的面积,最后再利用三角形的面积公式逆解此题就可以了。

  解: 40×35÷2

  =1400÷2

  =700(*方厘米)

  700×2÷70

  =1400÷70

  =20(厘米)

  因为这两个三角形的面积相等,还原成*行四边形的面积也相等。所以还可以还可以这样列式计算:

  40×35÷70

  =1400÷70

  =20(厘米)

  答:第二个三角形的高是20厘米。

  2.一个三角形和一个*行四边形的面积相等,底也相等,三角形的高是8厘米,*行四边形的高是多少厘米?

  思路分析:题目中的三角形和*行四边形的面积相等,也就是 ,不仅面积相等,两个图形的底也相等,也就是a1= a2,要使面积相等,三角形的高必须是*行四边形的高的2倍,才能达到要求,所以三角形的高是这个*形四边形高的2倍。

  解:8÷2=4(厘米)

  答:*行四边形的高是4厘米。

  3.一个三角形与一个长方形面积相等,已知长方形的周长是37厘米,长是16厘米。而三角形的底是长方形长的一半,高是多少?

  思路分析:这道题的已知条件指出,三角形与长方形的面积相等,只要求出长方形的面积就等于知道了三角形的面积。

  根据条件,已知长方形的周长和长,要先求出宽,才能求面积。我们用37÷2-16就可以算出宽了,再利用公式就求出面积了。

  又根据条件,三角形的底是长方形长的一半,就有求出三角形的底,再利用公式逆解就能求出三角形的高了。

  解: 37÷2-16

  =18.5-16

  =2.5(厘米)

  16×2.5=40(厘米)

  40×2÷(16÷2)

  =80÷8

  =10(厘米)

  答:这个三角形的高是10厘米。

  评析:以上三题的解题思路相同,要抓住两个图形面积相等的这个已知条件去分析思考,因此这两题是“面积相等,图形状不同”的题目,求另一图形的底或高,都是利用公式逆解的题目。

  要想很快找到解题方法,认真审题非常重要,求面积的公式也要相当熟练,要从题目的已知条件入手,利用公式,求出所求问题。这种思维方法,大家还应掌握。

  4.一个正方形的边长增加5厘米,它的面积就会增加95*方厘米,原来的正方形的边长是多少厘米。

  思路分析:这题要想求出所求问题,可以根据已知条件,画出一幅*面图,我们可以对照图来分析。

  通过画图,我们可以看出,阴影部分的面积就是增加的95*方厘米的面积。而阴影部分是由两个由原正方形为长,5厘米为宽的长方形面积和以5厘米为边长的正方形面积组合而成的。我们只要从95*方厘米中减去5×5的积再除以2再除以5就算出原正方形的边长了。

  解: 5×5=25(*方厘米)

  95-25=70(*方厘米)

  70÷2=35(*方厘米)

  35÷5=7(厘米)

  答:原正方形的边长是7厘米。

  注意,这题不能这样画图。

  如果按照上图的画法,等于把正方形的每条边长增加了10厘米,题意理解错,肯定结果就错了。

  5.一个*行四边形,若底增加2厘米,高不变,面积就增加4*方厘米。若高减少1厘米,底不变,面积就减少3*方厘米。求原*行四边形的面积。

  思路分析:根据题意,我们也可画出这题的*面图。我们也可以对照图来分析。

  通过观察图,明显看出,当底增加2厘米,高不变时,原来的*行四边形的面积增加了一个和原来的*行四边形相等的底是2厘米的*行四边形的面积,这样就求出了原来*行四边形的高。

  我们还可以从图上看出,当高减少1厘米而底不变时,原来的*行四边形就减少了一个和原来的*行四边形等底、高是1厘米的*行四边形的面积,这样就可算出*行四边形的底了。最后根据条件,就可算出原*行四边形的面积了。

  解: 4÷2=2(厘米)

  3÷1=3(厘米)

  3×2=6(*方厘米)

  答:这个*行四边形的面积是6*方厘米。

  评析:以上两题是比较复杂的*面图形的有关计算题目。为了使条件和问题形象地展示出来,我们就可以通过图来解决。画图法也是解答数学难题的方法之一,它对于解答数量关系复杂的题目,有着很重要的作用。因此,大家不能忽视画图法的学习。

  智能显示

  心中有数

  本单元学习的主要内容:

  1.*行四边形面积计算公式的推导;*行四边形面积的计算公式;利用*行四边形面积的计算公式解决实际问题。

  2.三角形面积计算公式的推导;三角形面积的计算公式;利用三角形面积的计算公式解决实际问题。

  3.梯形面积计算公式的推导;梯形面积的计算公式;利用梯形的面积公式解决一些实际问题。

  4.组合图形面积的计算方法以及计算。

  5.用工具测地面的直线距离。

  6.步测和目测的方法以及有关计算。

五年级数学多边形的面积教案2

  教学目标:

  1.使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。

  2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用。

  3.培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  教具、学具准备:

  1.用厚纸做完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

  教学过程:

  一、复习

  计算*行四边形的面积。

  教师:前面我们学习了*行四边形面积的计算,今天我们来学习三角形面积的计算。

  板书:三角形面积的计算

  二、新课

  1.用数方格的方法计算三角形的面积。

  教师:前面我们在学习长方形面积和*行四边形面积时,都曾经用过数方格的方法,下面我们再用数方格的方法来求三角形的面积。

  2.通过操作总结三角形面积的计算公式。

  让学生拿出两个完全一样的锐角三角形,提问:

  用两个完全一样的锐角三角形能不能拼成一个*行四边形?让每个学生都动手拼一拼,或者同桌的两个学生一同拼摆。

  教师边说边演示拼的过程。先将两个锐角三角形重合放置,再按住三角形的右边顶点,使三角形时针运动相反的方向转动180,到两个三角形的底边成一条直线为止,再把右边三角形向上沿着第一个三角形的右边*移,直到拼成一个*行四边形为止,并把拼成的*行四边形图画在黑板上。然后再带着学生规范地照上面的步骤做一遍,做时仍需边做边强调:先要把两个锐角三角形重合,再旋转,旋转时哪个点不动?旋转了多少度?*移时是沿着哪条直线移动的?学生学会把两个完全一样的锐角三角形拼成一个*行四边形后,教师再说明:*移是图上各点沿直线移动,旋转是一个点不动,其它的点都围绕着不动点转。提问:

  每个锐角三角形的面积和拼出的*行四边形的面积有什么关系?

  学生回答后,教师强调:每个锐角三角形是拼成的*行四边形面积的一半。

  三、小结。

  教师结合黑板上分别由两个完全相同的三角形拼成的*行四边形的图指出:通过上面的实验,两个完全一样的三角形,不论是直角三角形,锐角三角形,还是钝角三角形,都可以拼成一个*行四边形。提问:

  这个*行四边形的底和三角形的底有什么关系?

  这个*行四边形的高和三角形的高有什么关系?

  这个*行四边形的面积和其中一个三角形的面积有什么关系?

  *行四边形的面积怎样求?一个三角形的面积是这个*行四边形面积的一半,那么这个三角形的面积应该怎样求呢?

  学生回答后,教师板书:

  三角形的面积=底高2

  为什么要除以2呢?学生回答后,教师指出:因为*行四边形的面积是底乘高,而三角形的面积是这个*行四边形面积的一半,所以三角形的面积是底乘高再除以2。

  教学用字母表示三角形的面积公式。

  教师:通常我们用字母a表示三角形的底,用字母h表示三角形的"高,用字母S表示三角形的面积。

  提问:

  用字母怎样表示三角形的面积公式?学生回答后

  教师板书:

  S=ah2

五年级数学多边形的面积教案3

  教学目标:

  知识与技能:通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。

  过程与方法:通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。

  情感、态度与价值观:通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。

  教学重点:

  整理完善知识结构,灵活运用面积公式解决问题。

  教学难点:

  沟通多边形面积公式之间的内在联系。

  教学方法:

  归纳整理,演示讲解;复习回顾。

  教学准备:

  多媒体。

  教学过程

  一、构建网络,新知汇总

  二、整理复习

  1、复习面积单位之间的进率。

  说说我们学过的面积单位有哪些,他们之间的进率是多少?板书:

  *方厘米 *方分米 *方米 公顷 *方千米

  100 100 10000 100

  2、及时练习

  三、巩固深化

  我们对本单元的知识和方法进行了整理与复习,接下来我们要做一些练习进一步巩固,使同学们把这部分知识掌握得更好。

  (一)按要求解答。(只列式,不计算)

  1、*行四边形底是4分米,高2.7分米,求它的面积?

  2、三角形面积是30*方米,底8分米,求它的高?

  3、梯形的面积是84*方米,高10米,上底5米,求下底?

  师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。

  (二)判断题:

  1、三角形面积是*行四边形面积的一半。( )

  2、两个面积相等的梯形,形状是相同的。( )

  3、两个完全一样的梯形可以拼成一个*行四边形。( )

  4、两个三角形的高相等,它们的面积就相等。( )

  5、把一个长方形的木条框架拉成一个*行四边形,它的周长和面积都不变。( )

  看来 ,同学们的分析和表达能力都很强,现在,我们来解决实际问题。

  (三)解决问题

  1、教材第113页第2题。

  出示第2题,引导学生看题。学生独立解答,并在小组中互相检查。

  教师指名板演,然后集体订正。

  师:通过计算这些图形面积,你想提醒大家什么?(计算图形面积时,底和高要对应)

  2、1、课件出示教材第116页练习二十五第7题。

  (1)学生独立解题。

  (2)汇报评价。

  3、课件出示教材第116页练习二十五第8题。

  (1)学生独立解题。

  (2)汇报评价。

  4、教材第116页练习二十五第9题。

  (1)组织学生用剪刀把正方形纸片按题目要求剪一剪。

  (2)算一算剩下的面积是多少。

  5、教材第116页练习二十五第10题。

  (1)组织学生在小组中讨论:怎样计算这个图形的面积呢?

  (2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:

  ①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。

  教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。

  ②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。

  ③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。

  (3)全班交流,集体订正。

  四、课堂小结。

  多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。

五年级数学多边形的面积教案4

  教学目标:

  1、使学生通过探索理解和掌握*行四边形的面积公式,会计算*行四边形的面积。

  2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  3、培养学生学习数学的兴趣及积极参与、团结协作的精神。

  教学重点:

  探究*行四边形的面积计算公式,会计算*行四边形的面积。

  教学难点:

  *行四边形面积公式的推导过程。

  教具准备:

  、方格纸、剪刀、长方形、*行四边形。

  教学过程:

  一、情景引入,激趣导课

  1、情景引入(出示) 师:同学们,在以前的学习中我们已经认识了很多图形,请看大屏幕。你发现了哪些图形?你能计算哪些图形的面积? 生:长方形、正方形、*行四边形、三角形、梯形。 相机板书:长方形的面积=长×宽 正方形的面积 =边长×边长

  2、从*行四边形的花坛中引出“*行四边形的面积”。

  师:这两个花坛哪一个大?(生自由说)。 提出问题:你确定哪一个面积大吗? 我们已经知道长方形的面积是怎样算,*行四边形的面积又怎样算呢? (生可能猜想:*行四边形的面积=底×高 ,试问:你是怎么知道的?今天我们这节课主要来研究*行四边形的面积)

  3、揭题:*行四边形的面积(板书课题)

  二、动手操作,探究新知

  1、联想、猜测。(用数格子的方法) 长方形的面积与它的长和宽有关系,请大家猜测一下*行四边形的面积和谁有关系,有什么关系?

  生 1:底和高,底乘高等于*行四边形的面积。

  生 2:相邻两边的积等于*行四边形的面积。

  2、归纳意见,提出验证。(用剪、拼的方法) 能不能把*行四边形转化成长方形来计算它的面积呢?请同学们想一想,同桌交流,并动手用学具试一试。

  ⑴小组合作,动手操作。

  ⑵演示操作过程。(演示) 同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个*行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。

  例 1:一块*行四边形花坛的底是 6 米,高是 4 米,它的面积是多少? 两人板演,其余做在练习本上。S=ah=6×4=24( 2), 6×4=24( 2)

  〔评析:根据刚才对*行四边形面积计算方法的初步感知,先让学生猜测*行四边形的面积怎样算,然后把*行四边形转化成长方形,利用长方形面积推导出*行四边形的面积,从而验证了学生的猜测是正确的。通过教学,向学生渗透了猜测—转化—验证等数学思想方法,为以后学习三角形和梯形的面积做了充分准备。〕

  三、反馈练习,发展思维。

  练习

  四、课堂总结

  今天我们学习了*行四边形面积的计算,通过学习你又有哪些新的收获呢?

五年级数学多边形的面积教案5

  教学目标 :

  1、回忆所学的*面图形的面积推导过程,弄清图形面积之间的内在联系,巩固学生对面积计算公式的理解和记忆。

  2、通过整理知识网络图进一步发展学生的空间观念,提高学生分析和综合概括的能力。

  3、让学生通过灵活运用知识解决实际问题,提高不同层次学生解决实际问题的能力。

  4、体会数学与生活的联系,培养学生学习数学的兴趣,以及良好的学习习惯和学习态度。

  教学重点:

  通过整理知识网络图进一步发展学生的空间观念,提高学生分析和综合概括的能力。

  教学难点:

  通过灵活运用知识解决实际问题,提高不同层次学生解决实际问题的能力。

  教法学法:

  根据本课的教学内容,本课采用先整理后练习的复习模式 。

  指导思想:

  本课的指导思想是发挥学生的主题作用,引导学生自主学习,使不同学生在数学课上得到不同的发展。《课标》指出:动手实践、自主探索与合作交流是学生学习数学的重要方式;学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本课在回忆整理应用的教学环节中,通过教师引导和点拨,提高学生的归纳整理知识的能力,并充分调动了学生的学习积极性,从而提高了学生运用所学的知识解决问题的能力。

  教学过程:

  (一)整理和复习

  1、回忆。

  课的开始,我让学生回忆学过的*面图形的面积,想到哪个说哪个,给了学生选择的余地,提高学生回答问题的兴趣。然后让学生回忆推动过程时,采取了先让同桌交流的方法,这是因为我分析学生可能会想到不同图形的面积推导公式,为了照顾不同层次的学生,让学生能人人动口,提高学生的语言表达能力。

  2、整理。

  在整理的过程中,学生边说,我一边用课件演示,空间想象能力强的学生可以闭上眼睛在头脑中演示这个过程,空间想象能力弱的学生,可以借助多媒体来回忆,以便帮助他们更好的理解记忆面积公式。

  (二)构建知识网络图

  构建知识网络图是课前我比较担心的,我不知道学生会把知识网络图构建成什么样子。虽然课上在我的引领下这样比较好控制,但是为了照顾不同层次的学生,我把这项工作放在了课前,先让学生在家里整理好,这要就避免了学生之间相互模仿,无法体现个性;再通过课上的回忆让学生自己修改,使学生逐步学会整理归纳的方法;最后同学之间交流,完善知识网络图。在这个环节,面对学生构建的知识网络图,只要有道理我就会给予肯定,这样才能使学生敢于发表自己的意见,体现个体差异,增强自信心。

  (三)解决问题

  在解决问题的过程中,我用了羊村村长领着大家去羊村参观这一情境,充分调动了不同层次学生的学习积极性。

  要想去羊村参观就得闯关成功,这三关分别针对不同方面:第一关针对的是我们班的学困生,这些题让他们回答,可以使他们获得成功的体验,帮助他们树立自信心,提高学习数学的兴趣;第二关考验学生是否能灵活运用面积公式,针对的是中等学生;第三关是对学生在面积计算中经常出现错误的地方进行针对性练习,面向全体学生,以提高做题正确率。

  闯关成功后,计算玻璃的面积,是解决实际生活中的问题,让学生体会到数学与生活的联系。这块玻璃是一个组合图形,既可以用分割法计算,又可以用添补法计算,学生自己动手分一分、画一画,用自己的方法计算,充分体现了学生的个体差异。为了帮助学生理解,我制作了课件进行演示,直观形象,针对学困生降低了难度。

  (四)课堂作业

  课堂作业的设计也充分考虑到了不同层次的学生,第1题和第题较为简单,学优生做完后,给出了一道思考题,这道题为学有余力的学生准备。

  (五)小结

  今天我们复习了多边形的面积,并利用图形之间的内在联系制作了知识网络图,还运用所学帮助羊村解决了实际问题,在这里懒羊羊代表羊村谢谢大家,带给大家一首好听的歌,请大家伴随着歌声下课。

五年级数学多边形的面积教案6

  教学目的:

  1、通过复习,使学生理清各种*面图形面积计算公式之间的关系。

  2、使学生能够应用面积计算公式,熟练计算*行四边形、三角形、梯形和组合图形的面积。

  3、能灵活运用所学知识解决有关的实际问题。

  教学重点:

  熟练计算*行四边形、三角形、梯形及组合图形的面积。

  教学准备:

  *行四边形、三角形、梯形的磁片。

  教学过程:

  一、创设情境,揭示课题。

  1、想一想,本单元我们学习了哪些知识?

  揭示课题:今天这节课我们对第五单元的知识进行整理和复习。

  2、在小组内说一说,你学会了什么?

  二、知识梳理,形成网络

  1、复习多边形面积计算公式

  (1)老师分别出示*行四边形、三角形和梯形,让学生说一说各个图形面积公式是怎样推导出来的?

  老师根据学生所说,演示转化过程,形成如教材96页的板书。

  (2)从整理图中能看出各种图形之间的关系吗?

  学生回答后老师简要小结。

  2、练一练:

  老师出示下题让学生独立完成后集体核对。

  选择条件分别计算下列各图形的面积。

  3、师:刚才复习的是基本图形的面积,而由几个基本图形组合而成的图形叫什么?

  出示第96页的第2题,让学生自己独立完成。

  集体核对时让学生说一说自己的几种方法。

  学生可能会想到下面几种方法。

  比较哪种方法比较简便?

  三、应用拓展

  1、练习十九第1题。

  (1)让学生审题,说一说解题步骤。

  (2)独立完成。

  (3)小组交流,说一说你的发现。

  (4)全班交流。

  师小结:几个图形都在两条*行线之间,说明它们的高是相等的,在高相等的条件下,面积不等,说明它们的高都不等。

  2、练习十九第4题。

  (1)先让学生独立完成第1小题,集体核对。

  (2)出示第2小题,让学生思考:能剪几棵这样的小树要考虑什么因素?能不能用纸的面积除以树的面积?

  想一想该如何摆放小树?让学生在草稿本上画一画示意图。

  集体订正,展示。

  四、小结:说一说今天这节课最大的收获是什么?

  五、课堂作业:练习十九第2、3题。

五年级数学多边形的面积教案7

  教学反思:

  第三课时、三角形面积的应用

  教学内容:

  冀教版小学数学五年级上册第60、61页三角形面积的应用。

  教学提示:

  学生已掌握了三角形面积的计算公式,在此基础上引导学生把计算结果同实际的需要联系起来,培养数学应用意识和解决实际问题的能力。

  教学目标:

  1、知识与技能:结合具体情境,经历综合应用知识解决实际问题的过程。

  2、过程与方法:通过解决与三角形面积有关的简单问题,获得综合应用所学知识解决实际问题的经验和方法。

  3、情感态度与价值观:愿意对数学问题进行讨论,感受数*算的合理性与结果运用的现实性,培养数学应用意识。

  重点、难点:

  教学重难点:会应用三角形的面积计算公式解决一些简单的实际问题。

  教学准备:

  多媒体,图形。

  教学过程:

  一、复习导入

  同学们,我们已经学习了哪几种*面图形的面积?

  谁能说一说怎样求他们的面积?(学生自愿回答)

  【设计意图:让学生复习长方形、正方形、*行四边形、三角形的面积公式,为下面的学习打下伏笔。】

  二、探索新知

  1、出示例题:有两块白布,用它们做医院包扎使用的三角巾(不可拼接),第一块白布:长135分米,宽9分米。第二块白布:长140分米,宽10分米。

  9d

  2、提出问题。

  第一块白布可做多少块这样的三角巾呢?第二块白布可做多少块这样的三角巾呢?请同学试着用自己的方法算一算。

  3、解决问题。

  学生试算,教师巡视。了解学生计算的方法。

  师:学生汇报计算的结果。

  生:我先算第一块白布和一块三角巾的面积,再计算第一块白布可做多少块三角巾。

  135×9=1215(*方分米)

  9×9÷2=40.5(*方分米)

  1215÷40.5=30(块)

  生:我列成了一个综合算式

  (135×9)÷(9×9÷2)

  生:边长是9分米的正方形白布可以做2块三角巾,那么第一块白布可做多少块三角巾,就用

  135÷9×2=30(块)

  【设计意图:通过让学生自己尝试解决问题,经历成功与失败,培养学生克服困难的精神和勇气。】

  师:同学们的做法很好,希望大家在做题的时候用不同的方法解决问题,提高自己的思维能力。

  师:哪个组再汇报一下第二个问题的`解决方法。

  生:我们组用“总面积÷每块三角巾的面积”来做。

  白布面积:140×10=1400(*方分米)

  三角巾的面积:9×9÷2=40.5(*方分米)

  可以做多少块三角巾:1400÷40.5≈34(块)

  师:能做出34块吗?大家画图试一试。

  学生画图,发现问题,小组讨论

  师:同学们通过画图,发现了什么问题?

  生:第二块白布的长、宽虽然比第一块长5分米、宽1分米,题中要求“不可拼接”,所以不能做出34块,只能用第2种方法,做30块。

  生:先算白布长可以做多少个边长9分米的正方形。

  140÷9=15(个)……5(分米)余数5分米是多余的布料,不能做一个三角巾。

  再算白布宽可以做多少个边长9分米的正方形。

  10÷9=1(个)……1(分米)余数1分米是多余的布料,不能做一个三角巾。

  最后算可以做多少块三角巾。

  15×2=30(块)

  师总结:当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。

  【设计意图:在具体情境中,发展学生的空间观念,考察学生能否创造性运用已有知识。结合画图,引导学生把计算的结果同实际的需要联系起来,培养数学的应用意识和解决问题的能力。因此否定第一种算法、】

  三、巩固新知

  1、判断题

  (1)两个面积相等的三角形可以拼成*行四边形行()

  (2)等底等高的三角形面积相等()

  (3)三角形的面积等于*行四边形面积的一半()

  (4)三角形面积的大小与它的底和高有关,与它的形状和位置无关。()

  2、一块广告牌是三角形,底是12.5米,高*米。如果要给广告牌刷漆(只刷一面),每*方米用油漆0.4千克,刷这个广告牌需要油漆多少千克?

  3、教材第61页练一练1题。

  答案:1、×、√、×、√2、16千克、3、0.48*方米,72元

  【设计意图:练习分层次设计,主要是巩固、熟练公式,解决实际问题是让学生感知生活化的数学。】

  四、达标反馈

  1、大白菜地的形状是三角形,底80米,高60米,如果每棵大白菜占0.2*方米,这地可种大白菜多少棵?

  2、明明的房间是一个长4米、宽3米的长方形。用直角边分别是4分米和3分米这样的直角三角形地砖铺地,至少需要多少块?

  3、教材第61页2—3题。

  答案:1、80×60÷2=2400(*方米)2400÷0.2=12000(棵)

  2、4米=40分米,3米=30分米,

  40×30=1200(*方分米),4×3=12(*方分米),1200÷12=100(块)

  3、教材2、5×4.2÷2=10.5(*方米),39×11=429(千克)

  教材3、421≈400,58≈60,400×60÷2=12000(*方米)

  五、课堂小结

  师:通过今天的学习,你学会了那些知识?

  生:我知道:在实际问题中,三角形的底和高确定后,三角形的面积也就确定了。

  生:在解决问题时,根据实际情况确定方法。如例题的第二个问题就要考虑实际问题选择方法。当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。

  六、布置作业

  1、教材第61页4——6题。

  2、如图一个交通标志牌的面积是36*方分米,它的高是多少分米?

五年级数学多边形的面积教案8

  第四课时:多边形的面积复习

  教学内容:教材P113第2题及练习二十五第7、20题。

  教学目标:

  知识与技能:通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。

  过程与方法:通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。

  情感、态度与价值观:通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。

  教学重点:整理完善知识结构,灵活运用面积公式解决问题。

  教学难点:沟通多边形面积公式之间的内在联系。

  教学方法:归纳整理,演示讲解;复习回顾。

  教学准备:多媒体。

  教学过程

  一、 构建网络,新知汇总

  二、整理复习

  1.复习面积单位之间的进率。

  说说我们学过的面积单位有哪些,他们之间的进率是多少?板书:

  *方厘米 *方分米 *方米 公顷 *方千米

  100 100 10000 100

  2.及时练习

  520*方米=(??)公顷?????300*方千米=( )公顷

  4.2公顷=( )*方米 0.12*方米=( )*方分米

  三、巩固深化

  我们对本单元的知识和方法进行了整理与复习,接下来我们要做一些练习进一步巩固,使同学们把这部分知识掌握得更好。

  (一)按要求解答。(只列式,不计算)

  1、*行四边形底是4分米,高2.7分米,求它的面积?

  2、三角形面积是30*方米,底8分米,求它的高?

  3、梯形的面积是84*方米,高10米,上底5米,求下底?

  师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。

  (二)判断题:

  1.三角形面积是*行四边形面积的一半。( )

  2.两个面积相等的梯形,形状是相同的。( )

  3.两个完全一样的梯形可以拼成一个*行四边形。( )

  4.两个三角形的高相等,它们的面积就相等。( )

  5.把一个长方形的木条框架拉成一个*行四边形,它的周长和面积都不变。( )

  看来 ,同学们的分析和表达能力都很强,现在,我们来解决实际问题。

  (三)解决问题

  1.教材第113页第2题。

  出示第2题,引导学生看题。学生独立解答,并在小组中互相检查。

  教师指名板演,然后集体订正。

  师:通过计算这些图形面积,你想提醒大家什么?(计算图形面积时,底和高要对应)

  2.1.课件出示教材第116页练习二十五第7题。

  (1)学生独立解题。

  (2)汇报评价。

  3.课件出示教材第116页练习二十五第8题。

  (1)学生独立解题。

  (2)汇报评价。

  4.教材第116页练习二十五第9题。

  (1)组织学生用剪刀把正方形纸片按题目要求剪一剪。

  (2)算一算剩下的面积是多少。

  5.教材第116页练习二十五第10题。

  (1)组织学生在小组中讨论:怎样计算这个图形的面积呢?

  (2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:

  ①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。

  教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。

  ②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。

  ③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。

  (3)全班交流,集体订正。

  四、课堂小结。

  多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。

  布置作业:

  板书设计

  多边形的面积总复习

五年级数学多边形的面积教案9

  学习目标:

  1.复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。

  2.体会转化、估计等解决问题的策略,为教学*行四边形等图形的面积计算作比较充分的知识准备和思想准备。

  3.学习重难点:

  对图形进行分解与组合、分割与移拼的转化方法

  学具准备:学具盒

  学习过程:

  一、分一分、数一数

  1、下面两个图形的面积相等吗?

  2、怎样数的?在小组里交流一下。

  二、移一移、数一数

  1、怎样移动右边图形中的一部分,能很快数出它的面积?

  2、利用分割与*移,保持面积不变,把多边形转化为长方形,计算它的面积。

  这个图形的面积是多少?

  三、数一数、算一算

  1、下面是牧场中一个池塘的*面图。先把池塘上面整格的和不满整格的分别涂上不同的颜色,数一数各有多少个,再算出池塘面积大约是多少*方米?(不满整格的,都按半格计算)。

  2、你算出的面积大约是多少?

  这样的算法合理吗?

  在小组里说说自己的想法。

  3、你能算出右边树叶的面积大约是多少*方厘米吗?

  四、估一估、算一算

  1、采集几片树叶,先估计他们的面积个是多少*方厘米,再把树叶描在第122页的方格纸上,用数方格的方法算促他们的面积。

  2、你能用这样的方法算出自己手掌的面积吗?

  五、小结:今天我们进行面积是多少实践活动,怎样计算不规则图形的面积呢?

五年级数学多边形的面积教案10

  教学内容:

  教科书P84~P85的内容,三角形的面积。

  教学目标:

  1、使学生理解三角形面积公式的推导过程,并能正确的计算三角形的面积。

  2、培养学生分析、推理的能力和实际操作的能力。

  3、通过三角形面积计算公式的推导,引导学生运用转化的思考方法探索规律,培养学生思维的灵活性,发展学生的空间观念。

  4、培养学生学习数学的情感和兴趣,懂得运用数学知识解决生活中的问题。

  教学重点:

  用转化的方法探索三角形的面积公式,能正确计算三角形的面积。

  教学难点:

  理解三角形面积公式的推导过程和公式的含义,根据计算公式灵活解决实际问题。教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。

  教具准备:

  红领巾、信封若干(内有三角形)、实验报告表

  教学过程:

  一、情境导入,揭示课题。

  师:在我们美丽的校园里,有块*行四边形的空地,它的面积怎样计算的?(小黑板出示校园图)师:你还记得*行四边形面积的计算方法怎样推导的吗?(生:是通过把*行四边形转化成长方形推导出来的;老师根据学生回答板书:转化)师:现在园丁叔叔要把它沿着对角线斜着*分成2块,一块种菊花,一块种牵牛花,请看,每块花地是什么形的?(出示分法:分出2个三角形)师:每块花地的面积是多少,该如何计算?大家想知道吗?(生:想)好,咱们就一起来研究三角形的面积计算方法。(老师出示课题:三角形的面积)

  二、操作“转化”,推导公式。

  1、寻找思路:师:我们能不能也学学推导*行四边形面积的方法,把三角形也转化成已学过的图形来推导呢?

  师:想一想,将三角形转化成学过的什么图形?

  2、操作探索:(1)提出操作和探究要求。

  师:请小组合作拿出准备好的学具袋(装着三角形的信封袋),在里面选择你认为合适的三角形拼一拼,说说你发现什么,并根据你们的结论,一起合作填好下表(每个小组1张表,并投影出示)实验记录表

  讨论探索:三角形与拼成的图形之间的关系

  A、两个完全一样的()三角形拼成一个();

  B、三角形的底与拼成的()形的底( );

  C、三角形的高与拼成的()形的高();

  D、原来三角形的面积等于拼成的()形面积的()。

  (2)学生以小组为单位进行操作和讨论。

  教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生。

  (3)展示学生的剪拼过程,交流汇报。

  师:哪个小组想来展示、汇报你们的成果?

  让小组组长汇报。(学生一边拿三角形在黑板演示,一边根据所填的表格说,演示完毕把作品贴在黑板上。)

  每一组汇报完演示:用旋转*移的方法将三角形转化成各种已学过的图形。(两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)

  根据学生的回答和演示得出:两个完全一样的三角形能拼成一个*行四边形,三角形的底和高分别与*行四边形的底和高相等,三角形的面积是*行四边形面积的一半。

  3.归纳公式:师:你能根据我们的结论推导出三角形的面积计算方法吗?请把你的推导填在书上84页的这里。学生填完后,评定。

  师:说说你推导的理由是什么?(如学生不能把关键问题回答出来,应适当给予引导)

  让三、四位同学分别大胆地推导说理,接着让同学们评价自己的猜测和证明。老师根据学生的汇报,小结三角形面积公式的推导过程,并完成板书:

  因为:两个完全一样的三角形可以拼成一个*行四边形,*行四边形的面积=底×高。所以:一个三角形的面积=底×高÷ 2

  师:如果用S表示三角形的面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?

  结合学生回答,教师板书:S=ah÷2

  4、尝试计算:师:现在你会解决园丁叔叔的问题吗?

  学生列式计算,反馈、点评。

  三、解决问题,体现数学价值。 1.解决问题,学习例2。出示85页例2:学生独立完成,集体订正。

  师:你认为计算三角形的面积,什么地方容易出错?(强调“÷2”这一关键环节)

  2、数学常识,阅读题解:师:其实早在20xx年前,我国伟大的劳动人民就开始会用这个公式来计算三角形土地的面积了。请同学们课后把85页的“你知道吗”读一读。

  3.实践运用,P86第4题:要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?学生独立完成,然后汇报、评讲。

  四、联系生活,综合运用,适当拓展。

  1、做一做练习。

  2、判断:①两个三角形一定能拼成一个*行四边形。()

  ②三角形的底和高都是5分米,它的面积是25*方分米。()

  ③求三角形的高可以h=s×2÷a()

  五、总观全课,体验提高。

  师:这节课探究了什么?是怎样探究的呢?(渗透数学方法)

  引导学生根据板书,回顾这节课学习内容和探究思路。

  师:对!今天我们分小组通过动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的图形推导出了三角形面积的计算公式,你还想研究其他的推导方法吗?请回家想想,下节课告诉老师。

  六、作业设计:

  练习十六第1、3小题。

  七、板书设计:

  (略)


多边形的面积教学设计 (菁选5篇)(扩展6)

——数学《*行四边形的面积》教学设计5篇

数学《*行四边形的面积》教学设计1

  教学目标

  1.理解和掌握*行四边形的面积计算公式,会计算*行四边形的面积。

  2.通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力、发展学生的空间观念。

  3.感受数学在生活中的作用,体验学习数学的乐趣。

  教学重点和难点

  教学重点:探索并掌握*行四边形的面积计算公式,并能正确地计算*行四边形的面积。

  教学难点:使学生理解*行四边形面积计算公式的推导过程。

  教具学具:课件、一个*行四边形、剪刀

  教学过程

  一、创设情境,生成问题

  1.故事导入

  2.从*行四边形的地中引出课题“*行四边形的面积”。

  二、探索交流,解决问题

  1.用数方格的方法计算面积。

  (1)课件出示教材第87页方格图:现在请同学们用这个方法算出这个*行四边形和这个长方形的面积。说明要求:一个方格表示1*方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第87页表格)

  (2)学生完成,汇报结果。

  (3)观察表格的数据,你发现了什么?

  通过学生讨论,得到:*行四边形的底与长方形的长相等、*行四边形的高与长方形的宽相等;这个*行四边形面积等于长方形的面积。

  2.推导*行四边形面积计算公式。

  (1)提问:如果不数方格,能不能计算*行四边形的面积呢?

  (2)引导解决方法:把*行四边形转化成长方形

  (3)学生动手操作:拿出你们准备的*行四边形,以同桌为一小组,用课前准备的*

  行四边形和剪刀进行剪拼,教师巡视指导。

  (4)学生汇报演示剪拼的过程及结果。

  (5)教师用课件演示剪—*移—拼的过程。

  (6)我们已经把一个*行四边形转化成一个长方形,请同学们观察拼出的长方形和原来的*行四边形,你发现了什么?

  (7)出示讨论题,小组讨论。

  (8)小组汇报交流,教师归纳:

  3.教师指出如果用S表示*行四边形的面积,用a表示*行四边形的底,用h表示*行四边形的高,那么*行四边形的面积计算公式用字母怎样表示?

  三、巩固应用,分层提高

  1.教学例1

  例1、一块*行四边形花坛的底是6米,高是4米,它的面积是多少?

  (1)读题并理解题意。

  (2)学生试做,交流做法和结果。

  2.练一练

  (1)一个停车位是*行四边形,它的底长5米,高2.5米。它的面积是多少?

  (2)判断题

  (3)选择题

  (4)求*行四边形的面积

  (5)扩展题

  四、回顾整理,反思提升

  1.通过这节课的学习,你有哪些收获?

  2.用本课所学的知识证明老财主没有偏心。

  五、板书

数学《*行四边形的面积》教学设计2

  教学目标:

  1.使学生在理解的基础上掌握*行四边形的面积计算公式,能够正确地计算*行四边形的面积。

  2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思想方法在研究*行四边形面积时的运用,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点和难点:

  面积公式的推导。

  教具、学具准备:

  1. 教学课件。

  2.剪两个底40厘米,高30厘米的*行四边形,供演示用。

  3.每个学生准备一个*行四边形(可以用教科书第137页的图剪下来贴在厚纸上)和一把剪刀。

  教学过程:

  一、复习

  1.幻灯出示各种图形。提问:方格纸上画的是什么图形?什么叫*行四边形?它有什么特征?

  2.让学生指出*行四边形的底,再指出它的高。然后让每个学生在自己准备的*行四边形上画高。(教师巡视,注意画得是否正确。)

  二、新课

  1.用数方格的方法求*行四边形的面积。

  (1)指导学生数方格。

  (2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。

  (3)比较*行四边形和长方形。

  (4)小结:从上面的研究我们知道,*行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的*行四边形,像一块*行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出*行四边形面积的计算方法呢?

  2.用实验的方法推导*行四边形面积公式。

  (1)从上面的比较中,你发现*行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个*行四边形转化成一个长方形呢?想一想,该怎么做?(教师先要求学生要沿着哪条哪条高剪,再让学生动手)

  (2)教师示范把*行四边形转化成长方形的过程。

  刚才我发现有的同学把*行四边形转化成长方形时,把从*行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着*行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右*行移动。

  ③移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来直角三角形放回原处,再沿着*行四边形的底边向右慢慢移动,直到两个斜边重合(教师巡视指导。)

  (3)引导学生比较。(在黑板上剪拼成的长方形的上面放一个原来的*行四边形,便于比较。)

  ①这个由*行四边形转化成的长方形的面积与原来的*行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与*行四边形的底有什么样的关系?

  ③这个长方形的宽与*行四边形的高有什么样的关系?

  教师归纳整理:任意一个*行四边形都可以转化成一个长方形,它的长、宽分别和原来的*行四边形的底、高相等。它的面积和原来的*行四边形的面积也相等。

  (4)引导学生总结*行四边形面积的计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,*行四边形的面积怎么求?(指名回答后,在*行四边形右面板书:*行四边形的面积=底×高)

  (5)教学用字母表示*行四边形的面积公式。

  (6)看教科书第65页中相应的内容,并完成第65页中间的“填空”。

  3.应用总结出的面积公式计算*行四边形的面积。

  (1)看教科书第66页的例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在练习本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。

  (2)完成教科书第66页“做一做”中的第l题和第2题。做完后共同订正。

  (3)让学生拿出自己准备的*行四边形,量一量它的底和高是多少厘米,再求出它的面积。

  三、巩固练习

  做练习十六的第1题。

  四、小结

  这节课我们共同研究了什么?怎样求*行四边形的面积?*行四边形的面积计算公式是怎样推导出来的?

  五、作业;练习十六

  第2题和第3题。

数学《*行四边形的面积》教学设计3

  教学目标:

  1、在理解的基础上掌握*行四边形的面积计算公式,能正确地计算*行四边形的面积;

  2、通过操作、观察、比较,让学生经历*行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3、通过数学活动,让学生感受数学学习的乐趣,体会*行四边形面积计算在生活中的作用。

  教学重点:

  掌握*行四边的面积计算公式,并能正确运用。

  教学难点:

  把*行四边转化成长方形,找到长方形与*行四边形的关系,从而顺利推倒出*行四边形面积计算公式。

  教具准备:

  课件、*行四边形纸片、剪刀、直尺、三角板等。

  学具准备:

  2块*行四边形彩色纸片、三角板、直尺、剪刀

  教学过程:

  师:出示*行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在*行四边形图片上画一画,并标出底和高。)

  一、情境创设,揭示课题

  1、创设故事情境

  同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块*行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?

  2、复习旧知,揭示课题

  (1)、复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)

  (2)、师:你能帮它们求出这块*行四边形草地的面积吗?这节课,我们一起来研究*行四边形面积的计算方法。

  (板书课题:*行四边形的面积)

  二、自主探究,操作交流

  1、大胆猜想

  师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算*行四边形的面积,能不能也用这个方法?

  师:请同学们观看大屏幕,用数方格的方法计算*行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

  师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,*行四边形的面积可能与它的什么有关?

  师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?

  2、操作验证

  提示:想一想,如果我们把*行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

  学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的

  3、汇报交流

  师:你是怎样做的呢?谁愿意上来演示并说一说呢?

  师:同学们插上了想像的翅膀,把*行四边形转化成各种各样的已学过的图形,你们真棒。

  师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

  生:长方形。

  师:怎样剪才能拼成长方形呢?

  师:请大家拿起另一个*行四边形纸片,动手把它转化成长方形吧!

  生再次操作。

  4、发现方法

  (1)*行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与*行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求*行四边形的面积的方法呢?

  5、回顾公式推导过程

  (1)结合课件演示各部分间的相等关系。

  (2)指名说说*行四边形面积公式是怎么样推导出来的?

  6、学习用字母表示公式。

  师:如果*行四边形式形面积用字母s表示,底用a高用h表示,你能用字母表示*行四边形面积公式吗?(指名说说,师板书:s=ah)

  7、记忆公式

  闭上眼睛记记公式。

  如果要求*行四边形的面积,必需要知道哪些条件呢?

  8、尝试运用

  师:我们发现的这个*行四边形面积的计算公式是不是对任何一个*行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算*行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?

  (出示喜羊羊的草地图)(说明格式要求)学生独立完成。

  三、深化运用,加深理解

  通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算*行四边形面积原来这么简单,我们也会了。”

  四、解决问题,应用拓展

数学《*行四边形的面积》教学设计4

  教学目标:

  1、能用割补的方法,把*行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出*行四边形面积的计算方法

  2、能用*行四边形面积的计算方法解决简单的实际问题。

  3、在操作、观察、比较中,渗透转化的思想方法。

  4、在探究活动中,体验到成功的快乐。

  教学重点:

  推导*行四边形面积公式,并能够运用*行四边形面积公式解决简单的实际问题。

  教学难点:

  推导*行四边形面积公式

  教学准备:

  课件*行四边形硬纸片剪刀透明方格纸

  教学过程:

  一、情境激趣:

  师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?

  1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)2、铺*行四边形的草坪需要多少钱?师:需要先求什么?

  生:*行四边形的面积。师:这节课我们就来研究*行四边形的面积。(板书课题)

  二、实验探究:

  1、猜想

  那么大家猜一猜*行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个*行四边形,(演示)还可能与什么有关?(高)那么*行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

  2、实验

  1)独立自主探究:

  师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的*行四边形和长方形和表格、剪刀、*行四边形,想一想你打算用什么方法来研究?

  生:我用数格子的方法。

  师:数格子时,不足一格的按一格算,把得到的数据填在表格里

  师:还有什么方法?

  生:我用剪一剪、拼一拼的方法。

  师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。

  2)小组内交流:

  师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。

  3)学生汇报:

  (1)数格子(把表格带到前面说)

  (2)剪拼

  四、运用公式解决

  师:现在我们来算一下铺这块*行四边形草坪要用多少钱?

  五、拓展练习

  1、求下列图形的面积是多少?

  2、开放题:这是一张全国地图,有一个省的地形很接近*行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再*些)

  3、学校要建一个面积是12*方米的*行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)

  六、全课小结:

  师:这节课,你是怎么学习的?你有哪些收获?

数学《*行四边形的面积》教学设计5

  一、教学目标:

  1、知识目标:经历动手操作、讨论、归纳等探讨*行四边形面积公式,并能用字母表示,会用公式计算*行四边形面积。

  2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。

  3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。

  4、情感态度与价值观:使学生在探索*行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

  二、教学重点、难点及关键点剖析

  1、重点:*行四边形面积公式的推导及应用。

  2、难点:理解*行四边形面积计算公式的推导过程。

  三、教具、学具准备:

  *行四边形纸片、剪刀及电脑课件、

  四、教学过程:

  一、创设情境,导入新课

  猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是*行四边形的,它们都在想这样交换公*吗?同学们,你们说这样交换公*吗?我们怎样才能知道这样交换是否公*呢?

  二、自主学习

  在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)

  三、动手操作,验证猜想

  (1)小组讨论:能不能将*行四边形转化成长方形来计算?该怎样转化?(把*行四边形转化成长方形或正方形,必需沿着*行四边形的高剪)

  (2)以小组为单位进行剪拼。

  (3)指学生演示*行四边形转化成长方形的过程,并观看电脑演示过程。

  (4)讨论:

  四、当堂检测

  1、师:通过同学们的努力,我们已经推导出了*行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?

  2、计算下面*行四边形面积,列式正确的是:

  3、你能想办法求出下面这个*行四边形的面积吗?

  五、拓展提升

  六、课堂小结

  说说本节课,你收获了什么?

  七、板书设计:


多边形的面积教学设计 (菁选5篇)(扩展7)

——多边形的定义及其定理3篇

多边形的定义及其定理1

  按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。

  由在同一*面且不在同一直线上的三条或三条以上的线段首尾顺次连结且不相交所组成的封闭图形叫做多边形。在不同*面上的多条线段首尾顺次连结且不相交所组成的图形也被称为多边形,是广义的多边形。

  组成多边形的线段至少有3条,三角形是最简单的多边形。组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所组成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。

  多边形内角的一边与另一边反向延长线所组成的角,叫做多边形的外角。

  在多边形的每一个定点处取这个多边形的一个外角,它们的和叫做多边形的外角和。

  多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  多边形分*面多边形和空间多边形。*面多边形的所有顶点全在同一个*面上,空间多边形至少有一个顶点和其它的顶点不在同一个*面上。

  多边形也可以分为凸多边形及凹多边形,凸多边形全部都是*面多边形(*面多边形不等于凸多边形,还包括*面的凹多边形),但是凹多边形却非全是 空间多边形,也有*面凹多边形。

  有限个点A1、A2、A3、…、An-1、An和线段A1A2、A2A3、…、An-1An的总体,叫做折线。A1和An叫做这折线的端点;A2、A3、…、An-1叫做折线的顶点;A1A2、A2A3、…、An-1An叫做折线的`段节。如果折线的端点和各顶点不在同一*面内,则叫做空间折线;如果各顶点和两端点都在同一*面内,就叫*面折线。两端点重合的折线,叫做多边形。由空间折线构成的多边形叫做空间多边形;由*面折线构成的多边形叫做*面多边形。如果折线A1A2A3…An-1An的两端点A1和An重合,就成多边形A1A2A3…An-1An;A1A2、A2A3、 …、An-1An 叫做多边形的边;∠AnA1A2、∠A1A2A3、…叫做多边形的角;A1、A2、A3、…、An-1、An叫做这个多边形的顶点。*面多边形按边数分类,可分为三边形(三角形)、四边形、五边形、六边形等等。

多边形的定义及其定理2

  内角

  1、n边形的内角和等于(n-2)x180;

  注:此定理适用所有的*面多边形,包括凸多边形和*面凹多边形。

  2、在*面多边形中,边数相等的凸多边形和凹多边形内角和相等。但是空间多边形不适用。可逆用:

  n边形的边=(内角和÷180°)+2;

  过n边形一个顶点有(n-3)条对角线;

  n边形共有n×(n-3)÷2=对角线;

  3、 n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形

  推论:

  (1)任意凸形多边形的外角和都等于360°;

  (2)多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3);

  (3)在*面内,各边相等,各内角也都相等的多边形叫做正多边形。【两个条件必须同时满足】

  反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)。

  外角

  多边形外角和定理:

  1、n边形外角和等于n·180°-(n-2)·180°=360°

  2、多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  3、多边形的内角的一边与另一边的反向延长线所组成的角,叫这个多边形的外角,(这样的产生外角有两个,由于他们相等,但我们通常只取其中一个)。


多边形的面积教学设计 (菁选5篇)(扩展8)

——画正多边形教案 (菁选2篇)

画正多边形教案1

  教学目标:

  1、使学生能应用画正多边形解决实际问题;

  2、会应用“口诀”画正五边形的近似图;

  3、能对较复杂的几何图形进行分解,然后通过画正多边形进行组合.

  4、通过解决实际问题培养学生会从实际问题中抽象出数学模型的抽象能力及用数学意识;

  5、通过运用正多边形的有关计算和画图解决实际问题培养学生分析问题、解决问题的能力;

  6、通过对民间正五边形近似画法依据的探索,培养学生探索问题的能力;

  7、通过有关图形的分解与组合培养学生的观察能力、分解组合能力以及画图能力.

  教学重点:

  应用正多边形的计算与画图解决实际问题

  教学难点:

  从实际问题中抽象出数学模型,然后正确运用正多边形的有关计算,画图知识解决问题.

  教学过程:

  一、新课引入:

  上节课我们学习了运用量角器等分圆周画正多边形和运用尺规画特殊的正多边形,这节课我们继续研究正多边形的画法在实际问题中的应用等.

  二、新课讲解:

  在前几课学习了正多边形的有关计算和画法的基础上系统复习本部分内容并会综合运用解决实际问题.本节有关“地基”问题的例题就是通过复习正方形画法进而画正八边形,并对正八边形进行有关计算.通过此例不仅复习了正多边形的画法、计算,而且复习了查三角函数表,解直角三角形的方法,更为重要的是培养了学生从实际问题中抽象出数学模型的能力,从而提高学生分析问题、解决问题的能力.通过正五边形的民间近似画法的教学弘扬民族文化,揭示其科学性,渗透实践出真知的观点.

  上节课我们学习了正多边形的画法,哪位同学能叙述用量角器等分圆法画半径3cm的正十边形?(安排中等生回答:先画出半径3cm的圆⊙o,然后用量角器画出36°的中心角,然后依次画36°的中心角,或者用圆规量出36°中心角所对弦长,依次截取即得正十边形)出现误差积累应如何处理?(安排中等生回答:1)适当调节正十边形的边长,2)可能情况下,重新设计画图步骤,减少产生误差的机会)

  安排五名学生上黑板分别画半径3cm的圆内接正六边形、内接正三角形、内接正十二边形、内接正方形、内接正八边形,其余学生在下面画,然后师生共同评价所画图形的准确性.

  幻灯给出题目,如图7-152,有一个亭子,它的地基是半径为4m的正八边形,(1)用1∶200的比例尺画出地基*面图;(2)求地基的边长a8(精确到0.01m)和面积s8(精确到0.1m2)

  哪位同学知道亭子的地基指的是哪个地方?(安排知道的学生回答)哪位同学记得,什么是比例尺?(安排中下生回答,

  面图上正八边形的半径应是多少?(安排中下生回答:r=2cm)

  请同学们画出这个地基*面图.

  大家回忆一下,怎样求正八边形的边长?具体步骤是什么?(安排中等生回答:首先画出基本计算图,然后算出中心角的一半,∠aoc=22°30′.然后选三角函数)请同学们计算这个正八边形的边长.(a8≈3.06(m))

  pn·rn),现在要求这个正八边形的面积,边长已求出,周长自然知,还需求边心距,哪位同学告诉我,求r8应选什么三角函数?(安排中下生回答:选∠aoc的余弦)请同学们求出r8来.(r8≈3.70(m))请同学们计算出这个地基的面积.(s8≈45.3(m2))

  我国民间相传有五边形的近似画法,画法口诀是:“顶五九,八五两边分”,它的意义如图:(幻灯展示),如果正五边形的边长为10,作它的中垂线af,取af=15.4,在af上取fm=9.5,则am=5.9,过点m作be⊥af,在be上取bm=me=8.连结ab、bc、de、ea即可.

  例用民间相传画法口诀,画边长为20mm的正五边形.

  分析:要画边长20mm的正五边形,关键在于计算出口诀中各部分的尺寸,由于要画的正五边形与口诀正五边形相似,所以要画的正五边形的各部分应与口诀正五边形各部分对应成比例,由于口诀给出的是正五边形的各部分的比例数,所以不妨设口诀正五边形的边cd=10mm.由已知知道要画正五边形的边c′d′=20mm,因此可知要画的正五边形与口诀正五边形的相似比为2∶1,因此只要将口诀正五边形的各部分尺寸×2即得要画的正五边形的各部分尺寸.请同学们算出各部分的尺寸,并按口诀画出正五边形a′b′c′d′e′(安排一中等生上黑板画,其余同学在练习本上画)

  虽然这种画法是近似画法,但是这种画法的精确度却是很高的,哪位同学知道在五边形abcde中∠cad的度数是多少?(中上生回答:36°,因正五边形每一内角108°,ab=bc ∴∠bac=36°,同理∠dae=36°∴∠cad=36°)当然△cad为顶角36°的等腰三角形,为什么?(中等生回答:∵△abc≌aed(s.a.s),∴ac=ad.)前面

  取2.24作近似值,大家计算ac等于多少?(16.2)ac≈16.2也可说ac

  af≈15.4)刚才计算ac≈16.2,那么bm≈8.1,由于ab=10,请大家计算am又应等多少?(am≈5.9)刚才算出af≈15.4,am≈5.9,那么mf显然约为9.5.至此我们已将口诀中的所有数据的.来源探索清楚,从而证明我国民间的这种正五边形的近似画法精确度还是很高的.

  幻灯给出下列图案:

  请同学们观察这两个图形是怎么画出来的,先看第一图形,哪位同学知道的圆心和半径?(安排中上生回答:中点是圆心,oa长是半径)同理的圆心是的中点,的圆心是的中点,哪位同学发现这三个圆心与a、b、c三点恰好是圆o的什么点?(安排中下生回答:六等分点)

  请同学们画出这个图形.

  请同学们观察第二个图形,花瓣与⊙o的交点恰是⊙o的什么点?

  是半径).

  请同学们画出这个几何图案.

  三、课堂小结:

  本节课我们复习了正多边形的画法和有关计算,并运用这些知识去解决实际问题,学习了民间画正五边形的近似画法并对其科学性进行了探讨,最后学习了分解与组合有关正多边形的几何图案.

  四、布置作业

  教材p.171中练习1;p.173中12;p.173中14.

画正多边形教案2

  一、教材及学生分析

  教材使用的是广东省佛山区教学研究室编写的五年级信息技术教材,本课是第一单元LOGO语言基本命令的第五课,在这之前学生已经学习了小海龟的一些基本命令,如前进,后退、左转、右转、提笔、落笔等命令,本课主要目的是利用前进和右转等基本命令画正多边形,要求学生发现正多边形的特点,找到画正多边形的规律,从而知道如何计算小海龟的转动角度,并学会用重复命令(repeat n [一组命令]),完成同样的任务。本课内容分为两节课学习,本课为第一课时,第二课时是学生做练习,巩固学习到的知识。

  二、教学目标

  1、知识目标:学会指挥小海龟准确地画出正多边形,学会使用repeat命令。

  2、能力目标:通过编程练习,培养严谨、认真、科学的编程习惯,提高计算能力、思维能力和推理能力。

  3、情感目标:在独立思考的基础上,同学之间相互协作,以组为单位相互竞赛,养成积极进取的学习习惯。

  三、教学重点

  1、了解正多边形的特点是指各边长度相同的多边形,知道如何画正多边形。

  2、能计算出小海龟画正多边形时的旋转角度。

  3、掌握快速的编写语句的习惯,若需相同或相似的命令行,可直接将光标移动到前面行任意地方,按回车键即可。

  4、对于同样的任务,学会使用重复命令。

  四、教学难点

  1、如何计算小海龟的旋转角度。

  2、重复命令的书写规则和正确使用。

  五、教学准备

  计算机课室、大屏幕投影、红蜘蛛控制软件、Logo软件、纸制小海龟等。

  六、教学过程

  (一)复习旧知,导入新课:(5分钟)

  1、小组竞赛画屏幕所示直线、折线、直线与折线

  2、今天我们的学习任务,就是利用画直线、折线的简单命令,来画一些复杂的几何图形。

  (二)认识正多边形(包括正三角形、正方形、正五边形、…、正八边形、…)。

  1、这些图形的名称是什么,它们有什么共同特点?请学生发现规律,教师可提示他们发现边或角有什么特点。(正多边形,各条边相等)

  2、今天我们的学习任务就是指挥小海龟画这些图形。如何画出这些图形?

  (三)学习如何画正多边形(15分钟):

  1、学生说说如何画正四边形,如何画正三角形?可否画出正五边形?那利用你们以前的知识,可否画出正五边形,正七边形呢?

  2、学生思考、讨论,可利用以前了解的三角形和正方形的内角知识,得出正三角形、正方形的画法。但如何画好正五边形、正六边形等,则只能靠猜测了,提醒教育学生,养成严谨的、科学的学习习惯,得出结论前要有科学依据,不要想当然。

  3、教师介绍新方法,用课件和实物演示小海龟画正三角形、正四边形、正五边形的过程,启发学生思考小海龟是如何画图的,它向哪边转动,转的总角度,转了多少次,每次转的角度。

  4、学生讨论:小海龟转的总角度是多少?小海龟要转动几次?画正三角形时,每次转多少度?画正四边形时,每次转多少度?画正五边形呢?正六边形呢?

  5、学生:画正多边形时,旋转的角度=360/多边形的边数。师生共填表格中三角形至六边形。

  6、独立思考画正多边形的方法,为比赛做准备。

  7、学生分小组比赛画多边形,学会选择表示角度的最佳方法(10分钟)

  比赛要求:第一小组画正三角形,第二小组画正五边形,第三小组画正七边形。画做得快的可以教同学,但不可以直接帮同学做。(比赛题目故意设置难易不同,画正七边形的同学转动的角度为无限循环小数51.428571,并且要七次输入同样命令,为下面的内容做准备。)

  1、同学们如何快速输入重复命令的第一条秘决:光标移动到上一行任意位置,按回车键即可。

  2、转动角度命令的表示方法:rt 360/多边形的边数。

  (四)学习用重复命令画多边形(15分钟)。

  1、告诉学生快速写语句的第二秘决:使用重复命令。

  2、我们经常会使用到一些相同的命令,当一些命令完全相同时,我们可以将他们集合在一起,然后命令他们重复执行。

  3、课件展示:重复命令画多边形的格式是:repeat n [fd 边长 rt 360/边数

  (1)比赛继续进行,使用重复命令画七边形、八边形、九边形。

  (2)使用重复命令,画一个边长为30的正18边形。(让学生明白当多边形边数越多时,越像圆,为下节课《圆和圆弧》做准备)。

  (五)教学:(5分钟)

  1、各组在竞赛中成绩如何?

  2、今天我们学到了什么?

  3、如何计算正多边形的旋转角度,完成表格,正七边形及正多边形部分。

  4、重复命令的格式如何?什么情况下使用?画正多边形的命令如何?

  Repeat 边数 [fd 边长 rt 360/边数]

  附:板书设计

  画正多边形

  几何图形

  边数

  旋转公式

  每次旋转角度

  正三角形

  3

  360/3

  120

  正四边形

  4

  360/4

  90

  正五边形

  5

  360/5

  72

  正六边形

  6

  360/6

  60

  正七边形

  7

  360/7

  51.428571……

  正多边形

  边数

  360/边数

  Repeat 边数 [fd 边长 rt 360/边数]

推荐访问:多边形 教学设计 面积 多边形面积教学设计 菁选五篇 多边形的面积教学设计1 多边形的面积教学设计及反思

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

Copyright©2012-2024 百纳范文网版权所有 备案号:鲁ICP备12014506号-1