当前位置:百纳范文网>专题范文 > 公文范文 > 考研数学高数备考复习细节

考研数学高数备考复习细节

时间:2023-02-10 08:55:07 来源:网友投稿

下面是小编为大家整理的考研数学高数备考复习细节,供大家参考。

考研数学高数备考复习细节

考研数学高数备考的复习细节1

  第一,大家复习阶段已经到了强化阶段。但暑假结束后,大家就应该进入到冲刺阶段。强化阶段,大家需要注意数学题型的分类和做题方法的总结。那么冲刺阶段,大家应该进入到做真题和模拟题的阶段。对前一段的复习进行总结归纳。

  通过对真题,细致的讲解,精确的归纳,可以迅速帮大家加快复习进度,切中要害,迅速提高成绩。大家可以在做真题之后,结合视频来对做题过程中出现的问题进行分析和总结。发挥自己在学习中的主动性。

  第二,大家在冲刺阶段,要对整套卷的综合能力有所提高。还要对证明题有所注意,中值定理的证明,不等式的证明,积分不等式的证明,级数中的题目,也应该分类总结方法。那么对于应用题,物理应用(数学一二),几何应用,经济学应用(数学三)大家也应该多练习些题目。大家也应该注意。考试有可能考到知识点。例如形心,质心,转动惯量,函数的*均值。曲率和曲率半径,梯度(数学一),方向导数(数学一),散度(数学一),旋度(数学一),曲线的切线和法*面(数学一),曲面的法线和切*面(数学一)。

  总之呢,在复习的冲刺阶段呢,大家不要慌,按进度复习。新东方在线,在每个复习阶段会陪伴大家,会给大家更好的帮助和指导。


考研数学高数备考的复习细节扩展阅读


考研数学高数备考的复习细节(扩展1)

——考研数学高数备考基础阶段如何复习 (菁选2篇)

考研数学高数备考基础阶段如何复习1

  首先按照考试大纲划分复习范围。

  在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。

  其次按照大纲对数学的基本概念、基本方法和基本定理准确把握。

  高等数学考查还是以考查考生的基本知识和基本技能为住,考卷中偏题和怪题不是很多,所以考生先要从基础学起,先把教材中的一些概念、定理、公式复习好,牢牢地记住,并在此基础上选择一些题目进行强化。如果基础不是非常好,我建议暑期或者秋季报个考研辅导班,在老师的带领下将所学的知识进一步强化巩固。

  高数五大重难点

  1、函数连续与极限

  极限是高数的基本工具,是三大运算之一。求极限是考研试卷中常考的题型,是考试的重点。要求考生对于极限的概念以及求极限的基本方法掌握到位。在这一部分,还有两个重要的概念,即无穷小和间断点,是考试中常考的知识点,此处是我们复习的重点。常考的题型有:无穷小阶的比较,无穷小和极限的结合,间断点类型的判断。

  2、一元函数微分学

  求导是高数的第二大运算,要求对于各种类型函数的求导过关,也是为后面的多元函数求偏导打下基础。这一部分需要注意两个概念:导数和微分,要求理解导数的定义以及可导的充分必要条件。此外,还有导数的应用,这是内容比较多的一部分,是考试的重点,但不是难点,如函数的单调性、凹凸性、渐近线、拐点和方程根的判别等。这一部分还有一个难点,就是中值定理的相关证明题,不过这部分题目解题思路不太灵活,掌握常见的技巧和方法足可应对。

  3、多元函数微分学

  多元函数连续、可偏导及可微的定义,以及三者之间的关系要准确区分。多元函数复合函数和隐函数求偏导和求全微分一定要过关。这些都是考试的重点。

  4、多元函数积分学

  数二和数三同学仅仅考查二重积分的计算,这是考试的重点,是每年必考的,常见题型有二重积分的基本计算,选择合适的坐标系法和积分次序,有必要时进行交换坐标系和积分次序等等,这些都是基本的运算。对于数一的同学,在以上基础上,还需要学习曲线、曲面积分的计算和三重积分的计算。尤其需要注意的是第二类曲线积分和格林公式的结合,三维曲线积分和斯托克斯公式的结合,第二类曲面积分和高斯公式的结合,这些是出大题的地方。

  5、微分方程

  掌握考纲中要求掌握的几类方程的解法,如可分离变量方程、齐次方程、一阶线性微分方程、可降阶微分方程(数三不要求)、二阶常系数微分方程。需要注意一下常系数线性方程的解的结构。此外,微分方程和变上限函数、多元函数微分学或实际问题,经常会出一些综合题。

  数一的个别考点伯努利方程和欧拉方程,数三的个别考点有差分方程,同学们只需要掌握一般解法即可,不需要研究太多,不是考试的重点。

  最后基本功扎实后,就要大量做题。

  数学只有通过做大量的题目才能有质的飞跃。基础阶段高数主要做教材上的习题及课后练习题,做一本书最好做详细的计划,当然做计划也是有技巧的.:每天完成一章。因为每一章的内容多少和难度不同,不能一概而论,否则就会出现某一章一会就做完了,另外一章却做了一天也没结束,这样还容易打乱你其他科目的复习计划,毕竟考研不是只考数学。我的建议是:比如第一章,感觉一下这章对于自己而言的难度,一共有多少页,自己计划几天完成,然后定好每天完成多少页,计划要定的稍微宽裕一天,以防出现突然有事,或者这章难度超出预料。不要觉得这费时间,一本书定个详细的计划一个小时足够了吧,而一个详细的计划会让自己效率提高很多。

  数学复习是要保证熟练度的,*时应该多训练,应该一抓到底,经常练习,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。

考研数学高数备考基础阶段如何复习2

  从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。其它知识点考小题,如随机事件与概率,数字特征等。

  从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。随机变量之于概率正如矩阵之于线性代数。考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。所以随机变量的理解至关重要。讨论完随机变量之后,讨论其描述方式。分布即为描述随机变量的方式。分布包括三种:分布函数、分布律和概率密度。其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。

  介绍完一维随机变量之后,推广一下就得到了多维随机变量。多维分布总体上分成三种:联合分布,边缘分布和条件分布。其中每种分布又细分为分布函数、分布律和概率密度。只不过条件分布函数我们不考虑。该章常考大题,常考随机变量函数的分布和边缘分布、条件分布。之后讨论随机变量的独立性。

  分布包含着随机变量的全部信息,如果只关心部分信息就要考虑数字特征了。数字特征考小题。把公式性质记清楚,多练习即可。

  大数定律和中心极限定理是偏理论的内容,考试要求不高。

  数理统计是对概率论的应用。其中考大题的地方是参数估计(矩估计和极大似然估计),考小题的点是常用统计量及其数字特征,三大统计分布,正态总体条件下统计量的特殊性质。

  看来还是需要以考研大纲为基础,扎实学好基础知识,掌握基本的解题技巧,才能有效的攻破概率论考题。最后,除了要嘱咐大家扎实学习基础知识外,还要提醒各位考生合理安排复习计划,对概率论的复习切不可掉以轻心。


考研数学高数备考的复习细节(扩展2)

——考研数学高数高效复习的关键

考研数学高数高效复习的关键1

  一、高等数学

  同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;

  二、线性代数

  数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;

  三、数学二不考概率与数理统计

  研究典型题型

  对于数二的同学来说,需要做大量的`试题。即使在初始阶段,数二的很多同学都在对典型题型进行研究,问题在于你如何研究它,我认为应该对典型题型进行全方位立体式的研究。面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。

  做题的过程中,必须考虑为什么要用这几个定理,而不用那几个定理,为什么要这样对这个式子进行化简,而不那样化简。做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法。

  就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。学习数学二,重在做题,熟能生巧。对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。

  训练解答综合题

  此外,还要初步进行解答综合题的训练。数学二的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。这也有利于进一步理解并彻底弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。

  同时要善于思考,归纳解题思路与方法。一个题目有条件,有结论,当你看见条件和结论想起了什么?这就是思路。思路有些许偏差,解题过程便千差万别。考研数学复习光靠做题也是不够的,更重要的是应该通过做题,归纳总结出一些解题的方法和技巧。

  考生要在做题时巩固基础,在更高层次上把握和运用知识点。对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。

  做参考书上的练习题

  考研试题与教科书上的习题的不同点在于,前者是在对基本概念、基本定理、基本方法充分理解的基础上的综合应用,有较大的灵活性,往往一个命题覆盖多个内容,涉及到概念、直观背景、推理和计算等多种角度。因此一定要力争在解题思路上有所突破,要在打好基础的同时做大量的综合性练习题,并对试题多分析多归纳多总结,力求对常见考题类型、特点、思路有一个系统的把握。

  解题训练最好按题型进行分类复习,对于任何一个同学而言,都可能有自己很擅长的某些类型的题,相反的,也有一些不太熟悉或者不会做的题型,这在复习的过程中也当有所侧重。

  第一遍复习的时候,需要认真研究各种题型的求解思路和方法,做到心中有数,同时对自己的强项和薄弱环节有清楚的认识,第二遍复习的时候就可以有针对性地加强自己不擅长的题型的练习了,经过这样两边的系统梳理,相信解题能力一定会有飞跃性的提高。


考研数学高数备考的复习细节(扩展3)

——考研数学高数高效复习的重点

考研数学高数高效复习的重点1

  一、学习阶梯划分:

  一阶基础 全面复习(3月~6月)

  二阶强化 熟悉题型(7月~10月)

  三阶模考 查缺补漏(11月~12月15日)

  四阶点睛 保持状态(12月16日~考试前)

  二、参考书目 :

  必备参考资料:

  数学考试大纲

  《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。

  《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。《线性代数》清华版:适合基础比较的学生

  《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。

  历年真题

  三、复习规划

  1、一阶基础,全面复习(3月~6月)

  学习目标:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基 —— 基本概念、基本理论、基本方法要系统理解和掌握。完成从大学学习到考研备战的基础准备。

  复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的配套练习题,通过练习检验你是否真正地把教材的内容掌握了。由于教材的编写是环环相扣,易难递进的,所以建议每天学习新内容前要复习前面的内容,按照规律来复习,经过必要的重复会起到事半功倍的效果。也就是重视基础,长期积累;基础阶段重视纵向学习,夯实知识点。

  2、二阶强化 熟悉题型(7月~10月)

  本阶段是考研复习的重点,对成败起决定性作用。大体可以分两轮学习。

  第一轮暑期强化:7 ~ 8月

  学习目标:熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧

  复习建议:参加考研教育网强化班学习,根据老师辅导讲义认真研读,做到举一反三。这一时期大课老师所教学的例题都是经过严格筛选、归纳,可以说会更准确、更有针对性。在学习过程中对重点、难点一定做笔记,便于下一轮复习。

  第二轮秋季强化:9~10月

  学习目标:通过真题讲解和训练,进一步提高解题能力和技巧,达到实际考试的要求

  复习建议:根据老师课堂所讲真题课后进行专项复习,对考试重点题型和自己薄弱的内容进行攻坚复习,达到全面掌握,不留空白和软肋,让训练达到或稍微超过真题难度。

  3、三阶模考 查缺补漏(11月~12月15日)

  学习目标:这一阶段的目标是保住自己在前两个阶段的成果。1、通过对以往学习笔记的复习全面掌握考试要求;2、进行高强度(高于考试强度)的冲刺题训练,进入考试状态,达到考试要求。

  复习建议:建议考生要做到:1、通过做题进行总结和梳理(做题训练应当重点放在按考试要求的套题);2、复习教材和笔记进行必要的记忆,对基本概念、基本公式、基本定理进行记忆,尤其是*时不常用的、记忆模糊的公式,经常出错的"要重点记忆;3、开始进行模拟试题或者真题的实战演练,在这个过程中,注意答卷时间的分配,重视考场心态的调整。

  4、第四阶点睛 保持状态(12月15日~考试前)

  学习目标:考前重点题型,应考技巧训练,保持状态

  复习建议: 多看之前做过的真题,并将自己整理的笔记或总结的重点习题再仔细看看,更佳提高针对性,加深记忆。在此基础上,按照考试时间去做一些强度不太大的模拟题或是真题,保持手感,以免到了考场思路断电,手生。同时还要调整心态,积极备考,以良好的状态到考场。

  四、建议学习时间

  每年硕士研究生入学数学考试的时间一般都安排在上午,故建议考生们将数学的复习时间安排在每天早上9:00~12:00(可根据自身情况适当调整,但此时效果最好)。每天至少应安排花2.5-3个小时来复习数学,其中基础阶段要用1.5-2个小时左右的时间理解掌握概念、定义等,用1个小时左右来做习题巩固。对于数学基础较差的同学建议每天再加1个小时的复习时间用来做习题并总结。


考研数学高数备考的复习细节(扩展4)

——考研数学高数复习的技巧 (菁选2篇)

考研数学高数复习的技巧1

  当然,把握数学高分的前提必须要熟知数学考查内容和具体考些什么。数学主要是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。高数的基础应着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。另一部分考查的是简单的分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。最后就是数学的解应用题能力。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等知识。如果能够围绕着这几个方面进行有针对性地复习,取得高分也就不再是难事了。

  与此同时,在具体的复习过程中如何规划复习才能取得事半功倍的效果也是考试普遍关注的问题。数学复习要保证熟练度,*时应该多训练,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,要天天联系,熟悉,技能才会更熟能生巧,更能够灵活运用,如果长时间不练习,就会对解题思路生疏,所以经常练习是很重要的,天天做、天天看,一直坚持到最后。这样,基础和思路才会久久在大脑中成型,遇到题目不会生疏,解题速度也就相应越来越熟练,越来越快。

  如果已经开始高数初级阶段的复习,那么在之后的更加细密的复习过程中同样需要注意些问题。首先要明确考试重点,充分把握重点。比如高数第一章的不定式的极限,我们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。

  其次,对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和等。充分把握住这些重点,同学们在以后的.复习强化阶段就应该多研究历年真题,这样做也能更好地了解命题思路和难易度,从而使整个复习规划有条不紊。

  扎实的基础知识复习,合理的自我规划和练习,逐步解决高数的重难知识点,同时也对出题者命题思路有了一定的了解,如此,考研学子们定能在自己的数学复习领域看到丰硕的果实,相信最美好的结果来自坚定的自我努力。

考研数学高数复习的技巧2

  第一部分 《高数解题的四种思维定势》

  1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

  2.在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

  3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

  4.对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

  第二部分 《线性代数解题的八种思维定势》

  1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E.

  2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

  3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。

  4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。

  5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。

  6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

  7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。

  8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

  第三部分《概率与数理统计解题的九种思维定势》

  1.如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。

  2.若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式。

  3.若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组。

  4.若题设中给出随机变量X ~ N 则马上联想到标准化X ~ N(0,1)来处理有关问题。

  5.求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而Y的求法类似。

  6.欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的*面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。

  7.涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。

  8.凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。

  9.若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用分布,t分布和F分布的定义进行讨论。


考研数学高数备考的复习细节(扩展5)

——考研数学高数重要定理证明复习要点 (菁选2篇)

考研数学高数重要定理证明复习要点1

  高数定理证明之微分中值定理:

  这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。

  费马引理的条件有两个:1.f"(x0)存在2.f(x0)为f(x)的极值,结论为f"(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f"(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。

  费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。

  该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。

  闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?

  前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。

  那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。

  拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。

  以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。

  高数定理证明之求导公式:

  20xx年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在20xx年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给20xx考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

  当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。

  高数定理证明之积分中值定理:

  该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。

  若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。

  若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。

  接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。

  高数定理证明之微积分基本定理:

  该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

  变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。

  “牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。

  该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。

  注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。

考研数学高数重要定理证明复习要点2

  首先是确定做题顺序,可以采用填空、计算、选择、证明的顺序。因为尽管选择题的分数相对要少一些,但它们一般对基础知识要求较高,选项迷惑性大,有时需要花很多时间去分析也难以取舍。

  而且有些选择题的计算量也是很大的,如果在做题的开始就感觉不顺而花太多时间的话,会影响考试的心理状态。证明题考查的是严密的逻辑推理,难度也比较大。因此,建议这两类题型可以放在后面做,而先做相对简单的。

  一般来说,*时复习的时候要尽量从自己薄弱的方面“榨取”分数,而正式考试时,先通观整个试卷,迅速客观地评估自己的实力,明确哪些分数是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的应对方式,才能镇定自若,进退有据,最终从整体上获胜。

  同学们可以先解答填空题,一般讲填空题是基本概念,基本运算题,得分比较容易,当然试题中计算题或者证明题以*时看书或者参加辅导班老师所讲的例题类似的也可以先做;其次做计算题;最后解单项选择题,因为有些单项选择题概念性非常强,计算技巧也比较高,求解单项选择题一般有以下几种方法:

  (1)推演法:它适用于题干中给出的条件是解析式子。

  (2)图示法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。

  (3)举反例排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函数的情况。

  (4)逆推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做逆推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。

  (5)赋值法:将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。

  做选择题的时候,考生可以巧妙地运用图示法和赋值法。这两种方法很有效。同学们*时用得很多,但很多人进考场一紧张就忘了,而用一些常规方法去硬算,结果既浪费了时间又容易出错。

  计算题的题目结果一般不会特别复杂,一旦出现了很复杂的结果,就需要重点检查一下。如果遇到自己不会做和没有把握的题目,千万不要留空白,可以多写一些相关内容来得一些“步骤分”。

  拿到试卷检查无误后先看一下有没有自己熟悉的题,先解决掉自己有把握的再说,省得最后没有时间了把自己会的忽略了。

  针对数学一,一般而言,考研数学第一道大题填空题基本上全是概念性的题目,计算量不大,考生只要复习过,没有遗漏知识点,基本全都可以很快做出来;

  第二道大题选择题,其中有三四道题是大家都会做的,还有几道偏难的选择题,一时拿不准可以先放一放,实在不会还可以猜一猜;

  而第三道、第四道大题,一般来说难度不大,可以先做。历年试题这两道主要是高等数学的基本问题,如极限、偏导数或定积分应用题。接下来的高等数学的题目可能有些难度,如果考生对线性代数和概率统计比较擅长,可以先各做一个大题,这样整个卷面分数就可以达到70分左右,分数线可以通过。


考研数学高数备考的复习细节(扩展6)

——考研数学高数复习强化阶段的要点

考研数学高数复习强化阶段的要点1

  强化阶段的主要任务是归纳题型,总结方法,因为题型的重复率的确太高了。

  为了达到这个目的,可以通过两种途径来实现这个目标,一是通过看辅导书自己来训练,另外就是配合上强化班,在强化班上,我们会把考研常考题型系统归纳,并且针对每种总结出相应的常规方法,培养大家对常规题型的解题能力。

  在做题的"时候,有意识地加强练习做题的感觉,对复习效果会事半功倍,在做题时可以从以下几个方面入手:

  第一,读题

  做题要从题目的叙述开始。拿到一个题目,做题的第一步是要仔细阅读题目,把握题目的主要含义。阅读题目直到即使不看题目,也能记住题目的意思。

  第二,找出切入点

  仔细考虑题目的各主要部分,将它们以不同的方式进行组合,再调动已有知识,寻求其与题目之间的联系,试着认清题目中所隐含的你熟悉的东西。

  第三,分析题目要求

  分析下题目所求需要哪些条件,然后寻找这些条件与第二问找出的思路的关系,这样就能找到解题点了!

  如果你有意识地使用这种方式解题,那么一段时间过后,你会发现自己的解题能力、解题技巧、解题速度与正确性都会大大提高。


考研数学高数备考的复习细节(扩展7)

——考研数学备考的复习禁忌

考研数学备考的复习禁忌1

  不重基础重技巧

  数学复习必须打好第一步的基础,每年考研数学试题中都有 60% 以上的题目都在考查基础知识的`理解与掌握,所以一定要重视基础。但是很多同学不能够重视这一点,总是好高骛远,一味寻求技巧或者是抠难题,以为这样才是提高数学成绩的途径。其实,这就是相当一部分同学复习数学的恶习。考研数学中大部分是中挡题和容易题,所谓的 20% 的比较有难度的题目,其难度不过是简单题目上的进一步综合,并不是说有那么难。数学是一门逻辑性极强的科目,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。近几年数学答卷的分析来看,考生失分的重要原因不是说考题有多么难,更多的是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好而造成的失分。因此,一定要从实际出发,打到基础,深入理解,这样即便遇到一些难度大的题目也会顺利分解,这才是根本的解决方法。考研教育、网

  眼高手低只看不做

  这是很多考生存在的问题,总以为看会了,知道了方法,自己就会做了。这是个很大的问题。数学是一门严谨的学科,容不得半点纰漏,在我们还没有建立起来完备的知识结构之前,只看解题不亲自动手做的复习必然难以把握题目中的重点。况且,通过动手练习,我们还能规范答题模式,提高解题和运算的熟练程度。正式考试时三个小时那么大的题量,本身就是对计算能力和熟练程度的考察,而且现在的阅卷都是分步给分的,怎么作答有效果,这些都要通过自己不断的摸索去体会。因此,为了取得好的数学成绩,要求我们必须大量练习,充分利用历年试题,重视总结归纳解题思路、套路和经验。数学考试不需背诵,也不要自由发挥,全部任务就是解题。

  闷头做题不求甚解

  做题,做题,做题,多做题,就能提高成绩。很多同学这样认为,其实不然,做题的同时更要思考,联系,举一反三。做题,是要把整个知识通过题目加深理解并有机的串联起来。数学的学习离不开作题,但从来不等于作题,抽象性是数学的重要特征之一,在复习过程中,我们通过作题,发散开来对抽象知识点的内涵和外延进行深入理解,这是非常必要的。做题的思路,必然应该是从理解到作题归纳再回到理解。在此之外,再做一些题目增加熟练度是有必要的,如果让做题成为一种机械化的劳动,那不是我们的初衷,也不利于我们的进步。因此,要时刻目标明确、深入思考才识提高数学思维和数学能力的关键。

  照搬经验教条主义

  借鉴别人的成功经验能够帮助我们少走弯路,加快进步,但是,这要看如何借鉴。很多学生盲目追求别人现成的方法和技巧,不去理解着挑选着运用,殊不知方法和技巧是建立在自己对基本概念和基础知识深入理解的基础上的,每一种方法和技巧都有它特定的适用范围和使用前提,也就是因人而异,单纯的模仿是绝对不行的,不仅不会对复习有所帮助,反而容易造成困惑和失望,不利于我们的复习。


考研数学高数备考的复习细节(扩展8)

——考研数学高数考试的重点

考研数学高数考试的重点1

  第一:要明确考试重点,充分把握重点。比如高数第一章的不定式的极限,我们要充分把握求不定式极限的各种方法,比如利用极限的四则运算、洛必达法则等等,另外两个重要极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们充分理解函数连续的定义和掌握判定连续性的方法。

  第二:关于导数和微分。其实考试的重点并不是给一个函数求其导数,而是导数的定义,也就是抽象函数的可导性。还要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题。

  第三:关于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。

  第四:微分方程,无穷级数,无穷级数的求和等这两部分内容相对比较孤立,也是难点,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的"方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法、求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数与幂级数的和函数等。

  掌握方法很重要,持之以恒更重要,大家要理论联系实际,掌握方法的同时坚持做题,一定会在最后取得好成绩

推荐访问:备考 高数 复习 考研数学高数备考复习细节 考研数学高数备考的复习细节1 高数考研笔记 考研高数做题技巧总结 考研数学高数内容

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

Copyright©2012-2024 百纳范文网版权所有 备案号:鲁ICP备12014506号-1