当前位置:百纳范文网>专题范文 > 公文范文 > 2023年考研数学高数高效复习关键

2023年考研数学高数高效复习关键

时间:2023-02-06 16:50:05 来源:网友投稿

下面是小编为大家整理的2023年考研数学高数高效复习关键,供大家参考。

2023年考研数学高数高效复习关键

考研数学高数高效复习的关键1

  一、高等数学

  同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;

  二、线性代数

  数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;

  三、数学二不考概率与数理统计

  研究典型题型

  对于数二的同学来说,需要做大量的`试题。即使在初始阶段,数二的很多同学都在对典型题型进行研究,问题在于你如何研究它,我认为应该对典型题型进行全方位立体式的研究。面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。

  做题的过程中,必须考虑为什么要用这几个定理,而不用那几个定理,为什么要这样对这个式子进行化简,而不那样化简。做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法。

  就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。学习数学二,重在做题,熟能生巧。对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。

  训练解答综合题

  此外,还要初步进行解答综合题的训练。数学二的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。这也有利于进一步理解并彻底弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。

  同时要善于思考,归纳解题思路与方法。一个题目有条件,有结论,当你看见条件和结论想起了什么?这就是思路。思路有些许偏差,解题过程便千差万别。考研数学复习光靠做题也是不够的,更重要的是应该通过做题,归纳总结出一些解题的方法和技巧。

  考生要在做题时巩固基础,在更高层次上把握和运用知识点。对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。

  做参考书上的练习题

  考研试题与教科书上的习题的不同点在于,前者是在对基本概念、基本定理、基本方法充分理解的基础上的综合应用,有较大的灵活性,往往一个命题覆盖多个内容,涉及到概念、直观背景、推理和计算等多种角度。因此一定要力争在解题思路上有所突破,要在打好基础的同时做大量的综合性练习题,并对试题多分析多归纳多总结,力求对常见考题类型、特点、思路有一个系统的把握。

  解题训练最好按题型进行分类复习,对于任何一个同学而言,都可能有自己很擅长的某些类型的题,相反的,也有一些不太熟悉或者不会做的题型,这在复习的过程中也当有所侧重。

  第一遍复习的时候,需要认真研究各种题型的求解思路和方法,做到心中有数,同时对自己的强项和薄弱环节有清楚的认识,第二遍复习的时候就可以有针对性地加强自己不擅长的题型的练习了,经过这样两边的系统梳理,相信解题能力一定会有飞跃性的提高。


考研数学高数高效复习的关键扩展阅读


考研数学高数高效复习的关键(扩展1)

——考研数学高数高效率复习的方法 (菁选2篇)

考研数学高数高效率复习的方法1

  第一,保持对基础概念、理论的重视

  考研数学试题和前几年一样,以考查基础题目和中等题为主,因此对于高数,在*时的复习中,仍然要保持对基础概念、理论的重视,不要一味只做题,要及时从错题中找出自己基础中的薄弱环节,对照教材和复习全书查漏补缺。这个内容需要一直做到临考前。

  第二,把握好重难点

  考研数学高数中的重、难点主要有:

  第一章函数、极限、连续:1、求极限;2、无穷小阶的比较问题;3、间断点类型的判断;4、渐近线。

  第二章一元函数微分学:1、导数的定义;2、复合函数、隐函数和参数方程的求导;3、方程的根的相关问题;4、微分中值定理;5、导数在经济中的应用(数三)。

  第三章一元函数积分学:1、不定积分、定积分和反常积分的基本运算;2、变上限积分的相关问题;3、利用定积分求面积和旋转体的体积。

  第四章多元函数微分学:1、多元函数的连续性、偏导存在以及可微三者之间的关系;2、复合函数和隐函数求偏导,特别是抽象函数的偏导;3、多元函数的极值和最值问题。

  第五章多元函数积分学 :1、二重积分的计算;2、累次积分的换序与计算3、第二类曲线积分和第二类曲面积分的计算(数一);4、关于三重积分、第一类曲线积分和第一类曲面积分的基本计算(数一)。

  第六章常微分方程:1、求解微分方程的基本方法(可分离变量的微分方程、齐次微分方程和二阶线性常系数微分方程);2、关于微分方程的综合题(例如:变上限积分与微分方程的结合,二重积分与微分程的结合);3、关于微分方程的.应用题(例如:几何应用)。

  第七章无穷级数(数一和数三):1、关于常数项级数判敛的选择题;2、幂级数的收敛域、收敛半径和收敛区间;3、幂级数的展开与求和。

  第三,对后期复习要有整体规划

  基础阶段 全面复习(现在~6月)主要目标是系统复习,夯实基础,把基本概念、基本理论、基本方法的内涵与外延弄清楚,加强对知识点的把握,提高解题速度及正确率,为后期的阶段复习做充足的准备。

  强化阶段 熟悉题型(7月~10月)通过辅导资料,加强解题能力的训练,对基本方法进行归纳总结。这个阶段是考生数学能否考高分的关键,大家要好好利用这段时间,在建立知识框架的基础之上,全面了解各章各节的重点、难点和易考点。

  冲刺阶段 查缺补漏(11月~12月中旬)通过真题的练习,查缺补漏。注重错题的掌握。这段把要时间留给历年真题,必须把历年的真题彻底做几遍,一定要熟练掌握;如果前期的基础复习工作没有做好,也可以适当的处理完。

  模考阶段 保持状态(12月~考试前)这段时间主要有两个任务,一个是做几套全真模拟题,并且要根据数学考试的标准安排一上午的三个小时用一个单独的环境来模拟,通过模拟查漏补缺。另一个重要的任务要复习基础阶段的课本,强化阶段的全书复习和历年的真题,有什么问题再多看几遍,真正的做到温故而知新。

  第四,要坚持不懈地努力

  成功不是一朝一夕的事情,要坚持不懈的努力下去。除了有合理的计划、良好的心态外,还有最重要的一点,那就是坚持坚持再坚持。在考研的复习过程中,可能会遇到低潮或者迷惑,但是不要放弃考研,找到合适的途径度过低潮,坚持向自己的梦想前进。

考研数学高数高效率复习的方法2

  一、关于考研数学一中的高等数学:

  同济六版高等数学中除了第七章微分方程考带*号的欧拉方程,伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;第九章第五节不考方程组的情形;第十二章第五节不考欧拉公式;

  二、关于线性代数

  数学一用的教材是同济五版线性代数1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。其中向量组的线性相关性中数一考向量空间,线性方程组跟空间解析几何结合数一也要考;

  三、概率与数理统计

  内容包括: 1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计8、假设检验

  基础薄弱的同学,春季,也就是现在就可以投入复习了。

  一般来说复习分为四个阶段:第一个是基础复习阶段,这一阶段的任务是主攻教材和课本,达到基础知识的了解和掌握;第二个阶段是强化训练阶段,顾名思义这一阶段的主要任务是全书阶段,全面地掌握各类知识点,并且详细地做笔记,对常考的题型做大量的练习;第三个阶段是巩固提高阶段,这一阶段是通过真题和模拟题的训练和分析来完成将数学的整体框架结构搭建起来;最后一个阶段是冲刺阶段,这一阶段的时间一般较短,主要是做一些题目来达到稳固水*的目的,并且再次地强化之前所记忆的知识点。

  如何选择复习资料呢?

  数学资料有两类,一类是复习教科书,一类是考研辅导专家针对考研而编写的资料。教科书应是深广度适当,叙述详略得当,通俗易懂,便于自学,如同济六版的《高等数学》,浙大版的《概率论与数理统计》,同济版的《线性代数》;辅导书的选择应该严格按照考试大纲进行,选择的资料要紧扣考纲,不要购买含大量超纲内容的考研辅导资料。考生应根据需要选择适合自己的资料。老师提醒考生,资料不在多,关键在看透、掌握。找准复习重心,有了明确的学习重心,有了完整的复习主干,有了良好的复习方法,接下来就是要考察考生自己的学习能力了。这里值得一提的是,不要在复习开始的阶段就拿大量的试题来做,做题虽然是数学学习的重点,但是如果连基本的数学知识,包括基本的概念公式定理等都没有掌握好的话,做题肯定是达不到效果的,而且只能是倍受打击。提醒考生,在数学复习的这个阶段,也就是强化期,大家万万不可只用眼看,一定要亲手进行推导。当时认识自己看的很明白了,但是过不了多长时间,你就会忘得一干二净。参考书就是你这个阶段复习的重要武器,按着顺序慢慢来,一点一点来,一章一章的复习,先掌握知识,再在试题中检验自己。

  最后,需要提醒大家的是,基础是提高的前提,打好基础的目的就是为了提高。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,现阶段应该以基础为主,基础扎实了,再行提高。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水*其实已经在不知不觉中提高了,因为有这样的想法说明考生已经认识到了自已的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,只要坚持下去,就有成功的希望。


考研数学高数高效复习的关键(扩展2)

——考研数学高数复习提高效率的要点

考研数学高数复习提高效率的要点1

  一、参考书目

  1、高数(人大版微积分)

  2、线代(同济版)

  3、概率论(浙大版)

  4、海文考研系列:海文考研复习全书

  5、辅助书目:陈文灯的复习指南(模拟卷)

  6、历年考研数学三真题

  二、复习规划

  1、第一阶段:以前或现在至6月

  三本课本至少看完1~2遍课本,概念定理公式的推导等基础一定要熟知,重点的.公式一定要能自己推导;做完课后习题,要先自己做,再对照答案。在这一阶段一定要注重基础,熟练的掌握的基础知识;可以根据去年的考研大纲来复习,大纲要求的一定要复习到位;复习顺序可按高数、概率论、线性代数,高数是后两科的基础;

  在复习看书、做课后题时,一定要做好笔记,记录下重点、难点或很容易犯错的题,最好还能对数学的一些自己觉得很模糊的知识点做些梳理,对定义公式定理等写写自己的看法理解。

  2、第二阶段:7~10月

  这一阶段很重要,时间比较充分,可以全身心的投入复习。做李永乐复习全书1~2遍。做第一遍时,可能会感觉比较难,很多题不会做,不要怕,对于不会的、不理解的做好记号,第二次重点学习;一定要先自己做,再对照答案,要有自己的解题方法、思路;做题一定要进行方法的总结;对于定理概念、公式等会有遗忘的,一定要看教材,再次记忆。

  3、第三阶段:10月~11月

  第二次复*永乐全书,同时开始做数学真题。数学题一定要多做,才能掌握解题方法;做李永乐全书时,一定要再计算一遍,以前做错的要重点做一做,要查缺补漏。

  开始做真题事,要了解真题的出题思路、出题的重难点。

  做真题时,要模拟真正的考试,找一找考场的氛围。自己做好总结,发现自己易错理解不深刻的地方,及时回去查漏补缺。

  学数学要喜欢数学,兴趣很重要,数学要多做题,做题要细致,考研数学没想地那么难,基础很重要。


考研数学高数高效复习的关键(扩展3)

——考研数学高数高效复习的重点

考研数学高数高效复习的重点1

  一、学习阶梯划分:

  一阶基础 全面复习(3月~6月)

  二阶强化 熟悉题型(7月~10月)

  三阶模考 查缺补漏(11月~12月15日)

  四阶点睛 保持状态(12月16日~考试前)

  二、参考书目 :

  必备参考资料:

  数学考试大纲

  《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。

  《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。《线性代数》清华版:适合基础比较的学生

  《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。

  历年真题

  三、复习规划

  1、一阶基础,全面复习(3月~6月)

  学习目标:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基 —— 基本概念、基本理论、基本方法要系统理解和掌握。完成从大学学习到考研备战的基础准备。

  复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的配套练习题,通过练习检验你是否真正地把教材的内容掌握了。由于教材的编写是环环相扣,易难递进的,所以建议每天学习新内容前要复习前面的内容,按照规律来复习,经过必要的重复会起到事半功倍的效果。也就是重视基础,长期积累;基础阶段重视纵向学习,夯实知识点。

  2、二阶强化 熟悉题型(7月~10月)

  本阶段是考研复习的重点,对成败起决定性作用。大体可以分两轮学习。

  第一轮暑期强化:7 ~ 8月

  学习目标:熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧

  复习建议:参加考研教育网强化班学习,根据老师辅导讲义认真研读,做到举一反三。这一时期大课老师所教学的例题都是经过严格筛选、归纳,可以说会更准确、更有针对性。在学习过程中对重点、难点一定做笔记,便于下一轮复习。

  第二轮秋季强化:9~10月

  学习目标:通过真题讲解和训练,进一步提高解题能力和技巧,达到实际考试的要求

  复习建议:根据老师课堂所讲真题课后进行专项复习,对考试重点题型和自己薄弱的内容进行攻坚复习,达到全面掌握,不留空白和软肋,让训练达到或稍微超过真题难度。

  3、三阶模考 查缺补漏(11月~12月15日)

  学习目标:这一阶段的目标是保住自己在前两个阶段的成果。1、通过对以往学习笔记的复习全面掌握考试要求;2、进行高强度(高于考试强度)的冲刺题训练,进入考试状态,达到考试要求。

  复习建议:建议考生要做到:1、通过做题进行总结和梳理(做题训练应当重点放在按考试要求的套题);2、复习教材和笔记进行必要的记忆,对基本概念、基本公式、基本定理进行记忆,尤其是*时不常用的、记忆模糊的公式,经常出错的"要重点记忆;3、开始进行模拟试题或者真题的实战演练,在这个过程中,注意答卷时间的分配,重视考场心态的调整。

  4、第四阶点睛 保持状态(12月15日~考试前)

  学习目标:考前重点题型,应考技巧训练,保持状态

  复习建议: 多看之前做过的真题,并将自己整理的笔记或总结的重点习题再仔细看看,更佳提高针对性,加深记忆。在此基础上,按照考试时间去做一些强度不太大的模拟题或是真题,保持手感,以免到了考场思路断电,手生。同时还要调整心态,积极备考,以良好的状态到考场。

  四、建议学习时间

  每年硕士研究生入学数学考试的时间一般都安排在上午,故建议考生们将数学的复习时间安排在每天早上9:00~12:00(可根据自身情况适当调整,但此时效果最好)。每天至少应安排花2.5-3个小时来复习数学,其中基础阶段要用1.5-2个小时左右的时间理解掌握概念、定义等,用1个小时左右来做习题巩固。对于数学基础较差的同学建议每天再加1个小时的复习时间用来做习题并总结。


考研数学高数高效复习的关键(扩展4)

——考研数学复习高数需要注意事项 (菁选2篇)

考研数学复习高数需要注意事项1

  一、按照大纲对数学基本概念、基本方法、基本定理准确把握。

  数学是一门演绎的科学,靠侥幸押题是行不通的。只有对基本概念有深入理解,牢牢掌握基本定理和公式,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。数学的概念和定理是组成数学试题的基本元件,数学思维过程离不开数学概念和定理,因此,正确理解和掌握好数学概念、定理和方法是取得好成绩的基础和前提。

  二、要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。

  综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路。

  三、重视历年试题的强化训练。

  统计表明,每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。所以希望考生要注意年年被考到的内容,对往年考题要全部消化巩固。这样,通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。新东方在线认为,尽管试题千变万化,但其知识结构基本相同,题型相对固定。要特别注意以题型为思路归纳总结。

考研数学复习高数需要注意事项2

  一、历年微积分考试命题特点

  微积分复习的重点根据考试的趋势来看,难度特别是怪题不多,就是综合性串题。以往考试选择填空题比较少,而今年变大了。微积分一共74分,填空、选择占32分。第一是要把基本概念、基本内容有一个系统的复习,选择填空题很重要。几大运算,一个是求极限运算,还有就是求导数,导数运算占了很大的比重,这是一个很重要的内容。当然,还有积分,基础还是要把基本积分类型基础搞清楚,定积分就是对称性应用。二重积分就是要分成两个累次积分。三大运算这是我们的基础,应该会算,算的概念比如说极限概念、导数概念、积分概念。

  二、微积分中三大主要函数

  微积分处理的.对象有三大主要函数,第一是初等函数,这是最基础的东西。在初等函数的基础上对分段函数,在微积分的概念里都有分段函数,处理的一般方法应该掌握。还有就是研究生考试最常见的是变限积分函数。这是我们经常遇到的三大基本函数。

  三、微积分复习方法

  微积分复习内容很多,题型也多,灵活度也大。怎么办呢?这其中有一个调理办法,首先要看看辅导书、听辅导课,老师给你提供帮助,会给你一个比较系统的总结。老师总结的东西,每一个点要掌握重点,要举一反三搞清楚。从具体大的题目来讲,基本运算是考试的重要内容。应用方面,无非是在工科强调物理应用,比如说旋转体的面积、体积等等。在经济里面的经济运用,弹性概念、边际是经济学的重要概念,包括经济的函数。还有一个更应该掌握的,比如集合、旋转体积应用面等等,大的题目都是在经济基础上延伸出的问题,只有数学化了之后,才能处理数学模型。

  还有中值定理,还有微分学的应用,比如说单调性、凹凸性的讨论、不等式证明等等。应用部分包括证明推断的内容。

  简单概括一下就是三个基本函数要搞清楚,三大运算的基础要搞熟,概念点要看看参考书地都有系统的总结,哪些点在此就不一一列了。计算题、应用题、函数微分学延伸出的证明题都要搞熟。


考研数学高数高效复习的关键(扩展5)

——考研数学高数重要定理证明复习要点 (菁选2篇)

考研数学高数重要定理证明复习要点1

  高数定理证明之微分中值定理:

  这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。

  费马引理的条件有两个:1.f"(x0)存在2.f(x0)为f(x)的极值,结论为f"(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f"(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。

  费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。

  该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。

  闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?

  前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。

  那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。

  拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。

  以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。

  高数定理证明之求导公式:

  20xx年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在20xx年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给20xx考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

  当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。

  高数定理证明之积分中值定理:

  该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。

  若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。

  若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。

  接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。

  高数定理证明之微积分基本定理:

  该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

  变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。

  “牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。

  该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。

  注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。

考研数学高数重要定理证明复习要点2

  首先是确定做题顺序,可以采用填空、计算、选择、证明的顺序。因为尽管选择题的分数相对要少一些,但它们一般对基础知识要求较高,选项迷惑性大,有时需要花很多时间去分析也难以取舍。

  而且有些选择题的计算量也是很大的,如果在做题的开始就感觉不顺而花太多时间的话,会影响考试的心理状态。证明题考查的是严密的逻辑推理,难度也比较大。因此,建议这两类题型可以放在后面做,而先做相对简单的。

  一般来说,*时复习的时候要尽量从自己薄弱的方面“榨取”分数,而正式考试时,先通观整个试卷,迅速客观地评估自己的实力,明确哪些分数是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的应对方式,才能镇定自若,进退有据,最终从整体上获胜。

  同学们可以先解答填空题,一般讲填空题是基本概念,基本运算题,得分比较容易,当然试题中计算题或者证明题以*时看书或者参加辅导班老师所讲的例题类似的也可以先做;其次做计算题;最后解单项选择题,因为有些单项选择题概念性非常强,计算技巧也比较高,求解单项选择题一般有以下几种方法:

  (1)推演法:它适用于题干中给出的条件是解析式子。

  (2)图示法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。

  (3)举反例排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函数的情况。

  (4)逆推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做逆推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。

  (5)赋值法:将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。

  做选择题的时候,考生可以巧妙地运用图示法和赋值法。这两种方法很有效。同学们*时用得很多,但很多人进考场一紧张就忘了,而用一些常规方法去硬算,结果既浪费了时间又容易出错。

  计算题的题目结果一般不会特别复杂,一旦出现了很复杂的结果,就需要重点检查一下。如果遇到自己不会做和没有把握的题目,千万不要留空白,可以多写一些相关内容来得一些“步骤分”。

  拿到试卷检查无误后先看一下有没有自己熟悉的题,先解决掉自己有把握的再说,省得最后没有时间了把自己会的忽略了。

  针对数学一,一般而言,考研数学第一道大题填空题基本上全是概念性的题目,计算量不大,考生只要复习过,没有遗漏知识点,基本全都可以很快做出来;

  第二道大题选择题,其中有三四道题是大家都会做的,还有几道偏难的选择题,一时拿不准可以先放一放,实在不会还可以猜一猜;

  而第三道、第四道大题,一般来说难度不大,可以先做。历年试题这两道主要是高等数学的基本问题,如极限、偏导数或定积分应用题。接下来的高等数学的题目可能有些难度,如果考生对线性代数和概率统计比较擅长,可以先各做一个大题,这样整个卷面分数就可以达到70分左右,分数线可以通过。


考研数学高数高效复习的关键(扩展6)

——考研数学高数考试的重点

考研数学高数考试的重点1

  第一:要明确考试重点,充分把握重点。比如高数第一章的不定式的极限,我们要充分把握求不定式极限的各种方法,比如利用极限的四则运算、洛必达法则等等,另外两个重要极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们充分理解函数连续的定义和掌握判定连续性的方法。

  第二:关于导数和微分。其实考试的重点并不是给一个函数求其导数,而是导数的定义,也就是抽象函数的可导性。还要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题。

  第三:关于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。

  第四:微分方程,无穷级数,无穷级数的求和等这两部分内容相对比较孤立,也是难点,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的"方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法、求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数与幂级数的和函数等。

  掌握方法很重要,持之以恒更重要,大家要理论联系实际,掌握方法的同时坚持做题,一定会在最后取得好成绩


考研数学高数高效复习的关键(扩展7)

——考研数学高效复习的建议

考研数学高效复习的建议1

  建议一 必须整体操练,切忌单打独斗辅导

  不做套题你或许不能理解,脑袋高强度地运转3个小时,还是非常耗费体力的。有人说,如果考研前没有足够的训练,连续4科的考试很难坚持下来,即使 “坐”下来了,也很难保证状态。有很多同学反映第一次做完套题时,走路时都有一种轻飘飘的感觉,确实是很累的。但锻炼多了,坐3个小时也就成为一种习惯了。

  禁忌:边做边对答案、超时、将套题割裂开来,分块来做。这样既没有做套题的经验,也没有发挥整套真题的价值。因为套题是将高等数学、线性代数、概率论很好的结合在一起形成的,如果分开来做头脑里面知识还是断裂开的,做高数的时候只知道高数,线代的时候只知道线代,概率的时候只知道概率,三部分没有结合,还有的同学超时,用4个小时,或者3.5小时做整套试卷,这样做完即使得到了140分以上也大大折扣,真正考试时至少减掉30分以上。

  建议二 必须打分总结,切忌边做边忘

  总结的过程,实际上就是知识在你大脑中有序地存储的过程。这样才能够更加清楚地了解自己的情况,给自己压力,总结时间通常会超过做题的时间,也就是超过3h。

  禁忌:做完不打分,不总结。有的同学前面已经养成依赖答案的习惯,看到答案会做题,扔掉答案什么都不会。这样的做法一定要做套题的时候校正过来。只赶进度,只做新题,不总结,草草看一遍答案,说声“原来如此”就结束了。如果这样对待,我相信有的题目你遇到3遍也不一定能够掌握,最后的结果也许就是:你从考场下来的时候,看到答案时也是那声“原来如此”。

  建议三 强调及时温习,切忌盲目求速

  每做几套,也需要回头总结一下,自己在哪些知识点,哪些章节,哪种类型的题目中容易出问题,分析原因,制订对策。如果几套题下来总在一个知识点上出现问题,必须对改知识点、题型进行专题训练,予以突破。

  禁忌:发现问题不解决,明知道自己二重积分直角坐标、极坐标相互转换没有掌握,就是不肯放慢速度踢开这个绊脚石,还是硬着头皮往前走消耗已经积累的内功,到这个时候你的能力基本稳固,如果不突破这个瓶颈,很难在有提高。我们也用一个字来形容这个阶段“钻”这里的钻有两层意思一是钻井的钻所表达的意思,另一个是钻研的钻所表达的意思。同学们完成第二个阶段后大部分同学都会遇到一个屏障:我们在复习高等数学的时侯,高等数学的知识比较熟悉,但线性代数和概率很多知识都记不清楚,在复习线性代数的时侯,线性代数比较熟悉,但高数和概率很多知识也遗忘了,同样的复习概率的时侯,概率比较清楚,高数,线代许多知识也记不住了。该怎么办呢?这里就是我们钻要表达的意思,我们要通过钻真题和模拟题,钻透这个屏障,把高数、线代和概率都串起来,无论提到那部分知识都非常熟悉,这样才真正达到了考研数学的要求。


考研数学高数高效复习的关键(扩展8)

——考研数学复习高数需要注意什么

考研数学复习高数需要注意什么1

  抓住主要矛盾,明确考试重点

  高数的基本内容包括极限,一元函数微积分,多元函数微积分,无穷级数与常微分方程,向量代数与空间解析几何等几个部分。其中,多元函数微积分,无穷级数与常微分方程是高等数学考研出题的重点,向量代数与空间解析几何在历年真题中出现的很少。大家在高数的备考过程中要把重点放在极限、导数、不定积分、一元微积分的应用,还有中值定理、多元函数微积分、线面积分等内容。比如高数第一章的不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,两个重要的极限和对函数的连续性的探讨也是考试的重点。其次,导数的重点是导数的定义,也就是抽象函数的可导性。积分部分重点是定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法。同时求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。

  学会看书,把书读“活”

  首先,数学教材内容没有那么强的.故事性,所论述的理论有一定的抽象性,阅读起来比较枯燥,有一种让人昏昏欲睡的感觉。因此,考生在看书时要有耐心,不断思考其逻辑结构,把一个个知识点联系起来思考,形成固定的知识体系。比如在学习函数极限的性质中的局部有界性时,考生如果联系其在几何上的表现来理解,并思考其实质含义及应用,学习效果就会事半功倍。其次,看书的习惯也会影响学习的效果。比如,背英语单词的同学常常会遇到这样一个问题,每天从以字母a开头的单词开始背,结果总看到前面的那些单词,后面的单词到考试之前常常也看不到。在高数的复习中一些同学也会犯同样的错误。在看数学教材或辅导书时,最好每次看一个部分,下一次开始再接着看下一部分。这样每一次的内容都自成一个体系,不至于造成有些部分看了很多遍而有些部分一遍没看的后果。

推荐访问:高效 高数 复习 考研数学高数高效复习关键 考研数学高数高效复习的关键1 考研数学高数难点 考研数一高数重点 考研高数做题技巧总结

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

Copyright©2012-2024 百纳范文网版权所有 备案号:鲁ICP备12014506号-1