圆周角和圆心角的关系教学反思1 把射门游戏问题抽象为数学问题,研究圆周角和圆心角的关系,研究圆周角和圆心角的关系,应该说,学生解决这一问题是有一定难度的,尽管如此,教学时仍应给学生留有时间和空间,下面是小编为大家整理的圆周角和圆心角关系教学反思3篇(范例推荐),供大家参考。
圆周角和圆心角的关系教学反思1
把射门游戏问题抽象为数学问题,研究圆周角和圆心角的关系,研究圆周角和圆心角的关系,应该说,学生解决这一问题是有一定难度的,尽管如此,教学时仍应给学生留有时间和空间,让他们进行思考。
让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习的主要目标。
圆周角和圆心角的关系教学反思2
在本节课的教学中,我结合本节课教学内容、教学目标和学生的认知规律,在教学设计上,一是注重创设情境,激发学生学习的兴趣、主动性和求知欲望,为下一步教学的顺利展开开个好头;二是注重引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的学习方法进行学习,使学生在数学活动中深刻的理解知识和掌握由特殊到一般的认知方法。
圆周角和圆心角的关系教学反思3
本节课我认为是一节研究性的课,结论虽然简单、易用,但是探索的过程中体现了数学的分类思想与化归思想。如何让学生自然地理解是这节课的难点。
最开始,我是计划通过学生动手作圆周角来体会分类,但是考虑到时间的关系,没有让学生动手,尽管在后面对分类思想在本节课的应用进行了充分的讲解,但是对于学生自主探究还是有些欠缺,使学生对“为什么要分类”体会的不是很充分。这是本节节课比较遗憾的地方。另外,没有充分考虑到不同层次学生的需求。看了各位老师的建议,我获益匪浅,在今后上课的时候对各个环节更应充分的考虑。
圆周角和圆心角的关系教学反思3篇扩展阅读
圆周角和圆心角的关系教学反思3篇(扩展1)
——圆周角教学反思5篇
圆周角教学反思1
我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在勾股定理教学中反思如下:
一转变师生角色,让学生自主学习。
由同学们的作图,我们发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。当然作图存在着误差。可仍然证明不了我们的猜想是否正确。下面我们用拼图的方法再来验证一下。请同学们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2=c2(学生分组讨论。)学生展示拼图方法,课件辅助演示。
新课标下要求教师个人素质越来越高,教师自身要不断及时地学习新知识,接受新信息,对自己及时充电、更新,而且要具有诙谐幽默的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。
“教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。
数学的创造性不能没有逻辑思维,学习数学可以帮助养成理性思考的习惯。数学并不是公式的堆垒,也不是图形的汇集,数学有逻辑性很强的体系。数学不是只强调计算与规则的课程,而是讲道理的课程。培养与运用逻辑思维,并不是不顾及学生的可接受性一味地片面强调推理的严密和体系的完整,而是既要体现逻辑推理的作用,又不片面夸大它。几何的教学体系有别于几何的科学体系,在几何教学中,讲道理并完全不等同于纯粹的形式证明,几何教学培养逻辑思维能力同样要有的放矢,循序渐进,从直观到抽象,从简单到复杂?? 二转变教学方式,让学生探索、研究、体会学习过程。
学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的、不断循环的、人为挖掘的训练。 学习的过程性:
1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;
2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 学习的知识性:掌握勾股定理,体会数形结合的思想.
试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?
新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎
的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的关系)这块内容的证明部分。
教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。
几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,人们可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置.
培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。在这套教科书的几何部分,七年级上、下两册要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的"思维习惯。
由于信息技术的发展与普及,直观实验手段在教学中日益增加,有些学校还建立了“数学实验室”,这些对于几何学的学习起到积极作用。随着教学研究的不断深入,直观实验会在启发诱导、化难为易、检验猜想等方面进一步大显身手。但是,直观实验终归是数学学习的辅助手段,数学毕竟不是实验科学,它不能象物理、化学、生物等学科那样最后通过实验来确定结论。实验几何只是学习几何学的前奏曲或第一乐章,后面的乐曲建立在理性思维基础上,逻辑推理是把演奏推向高潮的主要手段。
四转变评价手段,让每个学生找到学习数学的自信。
评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括"他律"与"自律"两个方面。所谓"他律"是以他人评价为基础的,"自律"是以自我评价为基础的。每个人素质生成都经历着一个从"他律"到"自律"的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。 注重数学与生活的联系,从学生认知规律和接受水*出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。
通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。但是,这些并不是几何学的全部教育功能。从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水*。这正是自古希腊开始几何教学一直倍受重视的主要原因。
从实际需要看,一个普通人一生中运用几何知识的时间、场合,要比他应该运用逻辑思维的时间、场合少得多。前者在特定的环境下发生,而后者经常地、普遍地出现,它的作用远比前者大得多。一个人学过几何后,如果不继续从事与数学关系密切的学习或工作,他一生中有可能很少甚至不会用到在某个几何定理,但是他肯定应该经常不断地在不同程度上使用逻辑推理来分析问题。当然,其他课程也可以培养学生的逻辑思维能力,学习几何学并不是实现此目的之唯一途径。但是,长期以来几何学被普遍认为是适合培养逻辑思维能力的绝好课程是客观事实。形成这种状况的原因主要有:几何学的历史悠久,学科体系成熟;几何学体系的逻辑性特点格外突出;几何学的研究对象是几何图形,结合几何图形,利用图形语言,在一定程度上可以降低认识和理解逻辑推理的难度。
按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。
认识几何图形既需要形象思维,又需要抽象思维,两者相辅相成。虽然我们强调几何教学中逻辑推理的重要性,但是并不排斥直观实验。直观实验是初级认识手段,逻辑推理是高级认识手段。“看一看”“量一量”“做一做”等直观实验活动在几何学习的初始阶段的重要性尤为突出,即使在推理几何阶段的学习中,直观实验也具有重要的辅助作用,人们常借助某些直观特例来发现一般规律、探寻证明思路、理解抽象内容,有时直观实验与逻辑推理是交替进行的。
让学生享受数学的有趣:可利用愉快的游戏、生动的故事、激烈的竞赛、入境的表演、热情的掌声等创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。
让学生享受数学的有用:借助生活情境,让学生寻找有关的数学问题,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。
让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,只有这样,数学才能展示其精彩的一面;在教学中可有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语,批改作业时尽量少一些令人生厌的“×”,可以写上“再算算”。
圆周角教学反思2
本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用.同时,圆周角性质也是说明线段相等,角相等的重要依据之一.
本节课的重点是圆周角的概念和经历探索圆周角性质的过程,难点是合情推理验证圆周角与圆心角的关系.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大.而对圆周角与圆心角的关系理解起来则相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.此外,在知识的应用过程中还应引导学生注重前后知识的联系,提高学生综合运用知识的能力,培养学生对数学的应用意识、创新意识.
本节课我设计了问题情境——自主探究——拓展应用的课堂教学模式,以学生探究为主,配合多媒体辅助教学.在教学过程中,教师将问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体,注重教学与生活的联系,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想.教学中注重学生的个体差异,让不同层次的学生充分参与
到数学思维活动中来,充分发挥学生的主体作用.运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”“,乐学”.引导学生采用动手实践,自主探究,合作交流的学习方法进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力.与此同时,教师通过适时的点拨、精讲,使观察、猜想、实践、归纳、推理、验证贯穿于整个学习过程之中。本节课不足的是,由于内容较多,节奏有点快,可能有部分学生掌握的不够好,还需点时间巩固练习。
圆周角教学反思3
我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在勾股定理教学中反思如下:
一转变师生角色,让学生自主学习。
由同学们的作图,我们发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。当然作图存在着误差。可仍然证明不了我们的猜想是否正确。下面我们用拼图的方法再来验证一下。请同学们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2=c2(学生分组讨论。)学生展示拼图方法,课件辅助演示。
新课标下要求教师个人素质越来越高,教师自身要不断及时地学习新知识,接受新信息,对自己及时充电、更新,而且要具有诙谐幽默的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。
“教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。
数学的创造性不能没有逻辑思维,学习数学可以帮助养成理性思考的习惯。数学并不是公式的堆垒,也不是图形的汇集,数学有逻辑性很强的体系。数学不是只强调计算与规则的课程,而是讲道理的课程。培养与运用逻辑思维,并不是不顾及学生的可接受性一味地片面强调推理的严密和体系的完整,而是既要体现逻辑推理的作用,又不片面夸大它。几何的教学体系有别于几何的科学体系,在几何教学中,讲道理并完全不等同于纯粹的形式证明,几何教学培养逻辑思维能力同样要有的放矢,循序渐进,从直观到抽象,从简单到复杂?? 二转变教学方式,让学生探索、研究、体会学习过程。
学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的、不断循环的、人为挖掘的训练。 学习的过程性:
1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;
2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 学习的知识性:掌握勾股定理,体会数形结合的思想.
试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?
新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎
的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的关系)这块内容的证明部分。
教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。
几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,人们可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置.
培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。在这套教科书的几何部分,七年级上、下两册要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。
由于信息技术的发展与普及,直观实验手段在教学中日益增加,有些学校还建立了“数学实验室”,这些对于几何学的学习起到积极作用。随着教学研究的不断深入,直观实验会在启发诱导、化难为易、检验猜想等方面进一步大显身手。但是,直观实验终归是数学学习的辅助手段,数学毕竟不是实验科学,它不能象物理、化学、生物等学科那样最后通过实验来确定结论。实验几何只是学习几何学的前奏曲或第一乐章,后面的乐曲建立在理性思维基础上,逻辑推理是把演奏推向高潮的主要手段。
四转变评价手段,让每个学生找到学习数学的自信。
评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括"他律"与"自律"两个方面。所谓"他律"是以他人评价为基础的,"自律"是以自我评价为基础的。每个人素质生成都经历着一个从"他律"到"自律"的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。 注重数学与生活的联系,从学生认知规律和接受水*出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。
通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。但是,这些并不是几何学的全部教育功能。从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水*。这正是自古希腊开始几何教学一直倍受重视的主要原因。
从实际需要看,一个普通人一生中运用几何知识的时间、场合,要比他应该运用逻辑思维的时间、场合少得多。前者在特定的环境下发生,而后者经常地、普遍地出现,它的作用远比前者大得多。一个人学过几何后,如果不继续从事与数学关系密切的学习或工作,他一生中有可能很少甚至不会用到在某个几何定理,但是他肯定应该经常不断地在不同程度上使用逻辑推理来分析问题。当然,其他课程也可以培养学生的逻辑思维能力,学习几何学并不是实现此目的之唯一途径。但是,长期以来几何学被普遍认为是适合培养逻辑思维能力的绝好课程是客观事实。形成这种状况的原因主要有:几何学的历史悠久,学科体系成熟;几何学体系的逻辑性特点格外突出;几何学的研究对象是几何图形,结合几何图形,利用图形语言,在一定程度上可以降低认识和理解逻辑推理的难度。
按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。
认识几何图形既需要形象思维,又需要抽象思维,两者相辅相成。虽然我们强调几何教学中逻辑推理的重要性,但是并不排斥直观实验。直观实验是初级认识手段,逻辑推理是高级认识手段。“看一看”“量一量”“做一做”等直观实验活动在几何学习的初始阶段的重要性尤为突出,即使在推理几何阶段的学习中,直观实验也具有重要的辅助作用,人们常借助某些直观特例来发现一般规律、探寻证明思路、理解抽象内容,有时直观实验与逻辑推理是交替进行的。
让学生享受数学的有趣:可利用愉快的游戏、生动的故事、激烈的竞赛、入境的表演、热情的掌声等创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。
让学生享受数学的有用:借助生活情境,让学生寻找有关的数学问题,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。
让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,只有这样,数学才能展示其精彩的一面;在教学中可有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语,批改作业时尽量少一些令人生厌的“×”,可以写上“再算算”。
圆周角教学反思4
本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解,勾股定理的应用的教学反思(郑茹)。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。
针对本班学生的特点,学生知识水*、学习能力的差距,本节课安排了如下几个环节:
一、复习引入
对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水*低,引入内容简短明了,花费时间短。
二、例题讲解,巩固练习,总结数学思想方法
活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书,教学反思《勾股定理的应用的教学反思(郑茹)》。整个活动以学生为主体,教师及时的引导和强调。
活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。
活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。
三、巩固练习,熟练新知
通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。
在教学设计的实施中,也存在着一些问题:
1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。
2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。
3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。
圆周角教学反思5
教学目标:
(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(2)培养学生观察、分析、想象、归纳和逻辑推理的能力;
(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法。
教学重点:
圆周角的概念和圆周角定理
教学难点:
理解圆周角定理的证明
教学活动设计:
(在教师指导下完成)
(一)圆周角的概念
1、复习提问:
(1)什么是圆心角?
答:顶点在圆心的角叫圆心角。
(2)圆心角的度数定理是什么?
答:圆心角的度数等于它所对弧的度数。
2、引题圆周角:
如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角。(如右图)
(演示图形,提出圆周角的定义)
定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角
3、概念辨析:
教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由。 学生归纳:一个角是圆周角的条件:
①顶点在圆上;
②两边都和圆相交。
(二)圆周角的定理
1、提出圆周角的度数问题
问题:圆周角的度数与什么有关系?
经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系。引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部
(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半。
提出必须用严格的数学方法去证明。
(2)其它情况,圆周角与相应圆心角的关系:
当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论。
证明:作出过C的直径(略)
圆周角定理: 一条弧所对的
周角等于它所对圆心角的一半。
说明:这个定理的证明我们分成三种情况。这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想。(对A层学生渗透完全归纳法)
(三)定理的应用
1、例题: 如图OA、OB、OC都是圆O的半径, ∠AOB=2∠BOC。 求证:∠ACB=2∠BAC
让学生自主分析、解得,教师规范推理过程。
说明:
①推理要严密;
②符号“”应用要严格,教师要讲清
2、巩固练习:
(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?
(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数? 说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个。
(四)总结
知识:
(1)圆周角定义及其两个特征;
(2)圆周角定理的内容。 在思想方法:一种方法和一种思想:
在证明中,运用了数学中的分类方法和“化归”思想。分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题。
(五)作业 教材P100中 习题A组6,7,8
教学反思
本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用。同时,圆周角性质也是说明线段相等,角相等的重要依据之一。
本节课的重点是圆周角的概念和经历探索圆周角性质的过程,难点是合情推理验证圆周角与圆心角的关系。在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大。而对圆周角与圆心角的关系理解起来则相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中要着重引导学生对这一知识的探索与理解。还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出。此外,在知识的应用过程中还应引导学生注重前后知识的联系,提高学生综合运用知识的能力,培养学生对数学的应用意识、创新意识。
本节课我设计了问题情境——自主探究——拓展应用的课堂教学模式,以学生探究为主,配合多媒体辅助教学。在教学过程中,教师将问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体,注重教学与生活的联系,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想。教学中注重学生的个体差异,让不同层次的学生充分参与
到数学思维活动中来,充分发挥学生的主体作用。运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”“,乐学”。引导学生采用动手实践,自主探究,合作交流的学习方法进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。与此同时,教师通过适时的点拨、精讲,使观察、猜想、实践、归纳、推理、验证贯穿于整个学习过程之中。本节课不足的是,由于内容较多,节奏有点快,可能有部分学生掌握的不够好,还需点时间巩固练习。
圆周角和圆心角的关系教学反思3篇(扩展2)
——《圆周角》教学反思3篇
《圆周角》教学反思1
我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在勾股定理教学中反思如下:
一转变师生角色,让学生自主学习。
由同学们的作图,我们发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。当然作图存在着误差。可仍然证明不了我们的猜想是否正确。下面我们用拼图的方法再来验证一下。请同学们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2=c2(学生分组讨论。)学生展示拼图方法,课件辅助演示。
新课标下要求教师个人素质越来越高,教师自身要不断及时地学习新知识,接受新信息,对自己及时充电、更新,而且要具有诙谐幽默的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。
“教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。
数学的创造性不能没有逻辑思维,学习数学可以帮助养成理性思考的习惯。数学并不是公式的堆垒,也不是图形的汇集,数学有逻辑性很强的体系。数学不是只强调计算与规则的课程,而是讲道理的课程。培养与运用逻辑思维,并不是不顾及学生的可接受性一味地片面强调推理的严密和体系的完整,而是既要体现逻辑推理的作用,又不片面夸大它。几何的教学体系有别于几何的科学体系,在几何教学中,讲道理并完全不等同于纯粹的形式证明,几何教学培养逻辑思维能力同样要有的放矢,循序渐进,从直观到抽象,从简单到复杂?? 二转变教学方式,让学生探索、研究、体会学习过程。
学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的、不断循环的、人为挖掘的训练。 学习的过程性:
1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;
2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 学习的知识性:掌握勾股定理,体会数形结合的思想.
试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?
新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎
的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的关系)这块内容的证明部分。
教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。
几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,人们可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置.
培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。在这套教科书的几何部分,七年级上、下两册要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。
由于信息技术的发展与普及,直观实验手段在教学中日益增加,有些学校还建立了“数学实验室”,这些对于几何学的学习起到积极作用。随着教学研究的不断深入,直观实验会在启发诱导、化难为易、检验猜想等方面进一步大显身手。但是,直观实验终归是数学学习的辅助手段,数学毕竟不是实验科学,它不能象物理、化学、生物等学科那样最后通过实验来确定结论。实验几何只是学习几何学的前奏曲或第一乐章,后面的乐曲建立在理性思维基础上,逻辑推理是把演奏推向高潮的主要手段。
四转变评价手段,让每个学生找到学习数学的自信。
评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括"他律"与"自律"两个方面。所谓"他律"是以他人评价为基础的,"自律"是以自我评价为基础的"。每个人素质生成都经历着一个从"他律"到"自律"的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。 注重数学与生活的联系,从学生认知规律和接受水*出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。
通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。但是,这些并不是几何学的全部教育功能。从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水*。这正是自古希腊开始几何教学一直倍受重视的主要原因。
从实际需要看,一个普通人一生中运用几何知识的时间、场合,要比他应该运用逻辑思维的时间、场合少得多。前者在特定的环境下发生,而后者经常地、普遍地出现,它的作用远比前者大得多。一个人学过几何后,如果不继续从事与数学关系密切的学习或工作,他一生中有可能很少甚至不会用到在某个几何定理,但是他肯定应该经常不断地在不同程度上使用逻辑推理来分析问题。当然,其他课程也可以培养学生的逻辑思维能力,学习几何学并不是实现此目的之唯一途径。但是,长期以来几何学被普遍认为是适合培养逻辑思维能力的绝好课程是客观事实。形成这种状况的原因主要有:几何学的历史悠久,学科体系成熟;几何学体系的逻辑性特点格外突出;几何学的研究对象是几何图形,结合几何图形,利用图形语言,在一定程度上可以降低认识和理解逻辑推理的难度。
按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。
认识几何图形既需要形象思维,又需要抽象思维,两者相辅相成。虽然我们强调几何教学中逻辑推理的重要性,但是并不排斥直观实验。直观实验是初级认识手段,逻辑推理是高级认识手段。“看一看”“量一量”“做一做”等直观实验活动在几何学习的初始阶段的重要性尤为突出,即使在推理几何阶段的学习中,直观实验也具有重要的辅助作用,人们常借助某些直观特例来发现一般规律、探寻证明思路、理解抽象内容,有时直观实验与逻辑推理是交替进行的。
让学生享受数学的有趣:可利用愉快的游戏、生动的故事、激烈的竞赛、入境的表演、热情的掌声等创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。
让学生享受数学的有用:借助生活情境,让学生寻找有关的数学问题,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。
让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,只有这样,数学才能展示其精彩的一面;在教学中可有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语,批改作业时尽量少一些令人生厌的“×”,可以写上“再算算”。
《圆周角》教学反思2
我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在勾股定理教学中反思如下:
一转变师生角色,让学生自主学习。
由同学们的作图,我们发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。当然作图存在着误差。可仍然证明不了我们的猜想是否正确。下面我们用拼图的方法再来验证一下。请同学们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2=c2(学生分组讨论。)学生展示拼图方法,课件辅助演示。
新课标下要求教师个人素质越来越高,教师自身要不断及时地学习新知识,接受新信息,对自己及时充电、更新,而且要具有诙谐幽默的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。
“教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。
数学的创造性不能没有逻辑思维,学习数学可以帮助养成理性思考的习惯。数学并不是公式的堆垒,也不是图形的汇集,数学有逻辑性很强的体系。数学不是只强调计算与规则的课程,而是讲道理的课程。培养与运用逻辑思维,并不是不顾及学生的可接受性一味地片面强调推理的严密和体系的完整,而是既要体现逻辑推理的作用,又不片面夸大它。几何的教学体系有别于几何的科学体系,在几何教学中,讲道理并完全不等同于纯粹的形式证明,几何教学培养逻辑思维能力同样要有的放矢,循序渐进,从直观到抽象,从简单到复杂?? 二转变教学方式,让学生探索、研究、体会学习过程。
学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的、不断循环的、人为挖掘的训练。 学习的过程性:
1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;
2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 学习的知识性:掌握勾股定理,体会数形结合的思想.
试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?
新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎
的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的"关系)这块内容的证明部分。
教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。
几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,人们可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置.
培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。在这套教科书的几何部分,七年级上、下两册要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。
由于信息技术的发展与普及,直观实验手段在教学中日益增加,有些学校还建立了“数学实验室”,这些对于几何学的学习起到积极作用。随着教学研究的不断深入,直观实验会在启发诱导、化难为易、检验猜想等方面进一步大显身手。但是,直观实验终归是数学学习的辅助手段,数学毕竟不是实验科学,它不能象物理、化学、生物等学科那样最后通过实验来确定结论。实验几何只是学习几何学的前奏曲或第一乐章,后面的乐曲建立在理性思维基础上,逻辑推理是把演奏推向高潮的主要手段。
四转变评价手段,让每个学生找到学习数学的自信。
评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括"他律"与"自律"两个方面。所谓"他律"是以他人评价为基础的,"自律"是以自我评价为基础的。每个人素质生成都经历着一个从"他律"到"自律"的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。 注重数学与生活的联系,从学生认知规律和接受水*出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。
通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。但是,这些并不是几何学的全部教育功能。从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水*。这正是自古希腊开始几何教学一直倍受重视的主要原因。
从实际需要看,一个普通人一生中运用几何知识的时间、场合,要比他应该运用逻辑思维的时间、场合少得多。前者在特定的环境下发生,而后者经常地、普遍地出现,它的作用远比前者大得多。一个人学过几何后,如果不继续从事与数学关系密切的学习或工作,他一生中有可能很少甚至不会用到在某个几何定理,但是他肯定应该经常不断地在不同程度上使用逻辑推理来分析问题。当然,其他课程也可以培养学生的逻辑思维能力,学习几何学并不是实现此目的之唯一途径。但是,长期以来几何学被普遍认为是适合培养逻辑思维能力的绝好课程是客观事实。形成这种状况的原因主要有:几何学的历史悠久,学科体系成熟;几何学体系的逻辑性特点格外突出;几何学的研究对象是几何图形,结合几何图形,利用图形语言,在一定程度上可以降低认识和理解逻辑推理的难度。
按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。
认识几何图形既需要形象思维,又需要抽象思维,两者相辅相成。虽然我们强调几何教学中逻辑推理的重要性,但是并不排斥直观实验。直观实验是初级认识手段,逻辑推理是高级认识手段。“看一看”“量一量”“做一做”等直观实验活动在几何学习的初始阶段的重要性尤为突出,即使在推理几何阶段的学习中,直观实验也具有重要的辅助作用,人们常借助某些直观特例来发现一般规律、探寻证明思路、理解抽象内容,有时直观实验与逻辑推理是交替进行的。
让学生享受数学的有趣:可利用愉快的游戏、生动的故事、激烈的竞赛、入境的表演、热情的掌声等创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。
让学生享受数学的有用:借助生活情境,让学生寻找有关的数学问题,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。
让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,只有这样,数学才能展示其精彩的一面;在教学中可有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语,批改作业时尽量少一些令人生厌的“×”,可以写上“再算算”。
《圆周角》教学反思3
本节课我以学生探究为主,配合多媒体辅助教学、在教学过程中,我注重教学与生活的联系,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想、教学中注重学生的个体差异,让不同层次的学生充分参与到数学思维活动中来,充分发挥学生的主体作用、引导学生采用动手实践,自主探究,合作交流的学习方法进行学习,使学生在观察、实践中充分体验探索的快乐,发现新知,发展能力、
这节课做的比较好的地方是:
1、教学环节设计比较合理,尤其是对圆周角定理证明的处理。考虑到定理的后两种图形证明难度大,考试要求低,班级基础又弱,我采用了留作思考,个别点拨的方法,帮助学困生和中等生跳过这个“障碍",使得教学重难点没有被冲淡,教学目标比较明确,课时任务顺利完成。
2、基本上做到让学生讲。在课堂上学生能说的老师不说,学生说不出来的老师引导着说,学生没有想到的老师补充着说。3、小组4人合作使用合理。充分调动小组合作的积极性和有效性,利用角落的一点地方,进行课堂评价,使学生课堂效率和学习积极性大增。
这节课还留有很多的遗憾:引入部分的时间过多,使得时间分配不当,学生的练习不够充分。由于时间把握不好,导致设计的对于每个知识点都应该有一个练习与之对应没有很好完成,使学生对本节课的几个知识点不够明确,应用会有点生涩。
圆周角和圆心角的关系教学反思3篇(扩展3)
——《圆周角与圆心角的关系》教学反思3篇
《圆周角与圆心角的关系》教学反思1
把射门游戏问题抽象为数学问题,研究圆周角和圆心角的关系,研究圆周角和圆心角的关系,应该说,学生解决这一问题是有一定难度的,尽管如此,教学时仍应给学生留有时间和空间,让他们进行思考。让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习的主要目标。
《圆周角与圆心角的关系》教学反思2
在本节课的教学中,我结合本节课教学内容、教学目标和学生的认知规律,在教学设计上,一是注重创设情境,激发学生学习的兴趣、主动性和求知欲望, 为下一步教学的顺利展开开个好头;二是注重引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的>学习方法进行学 习,使学生在数学活动中深刻的理解知识和掌握由特殊到一般的认知方法。
《圆周角与圆心角的关系》教学反思3
本节课我认为是一节研究性的课,结论虽然简单、易用,但是探索的过程中体现了数学的分类思想与化归思想。如何让学生自然地理解是这节课的难点。最开始,我是>计划通过学生动手作圆周角来体会分类,但是考虑到时间的关系,没有让学生动手,尽管在后面对分类思想在本节课的应用进行了充分的讲解,但是对于学生自主探究还是有些欠缺,使学生对"为什么要分类"体会的`不是很充分。这是本节节课比较遗憾的地方。另外,没有充分考虑到不同层次学生的需求。看了各位老师的建议,我获益匪浅,在今后上课的时候对各个环节更应充分的考虑。
圆周角和圆心角的关系教学反思3篇(扩展4)
——《直线和圆的位置关系》教学反思10篇
《直线和圆的位置关系》教学反思1
《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的*台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。
亮点一:由于本节课综合性强,涉及到的知识面广,对学生的能力水*要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。
亮点二:在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。
亮点三:板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。
亮点四:充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。
亮点五:教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。
亮点六:教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的.榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。
《直线和圆的位置关系》教学反思2
这是我第一次进入初三进行教学,即紧张又兴奋。经过一个学期的历练,在校领导和组内老教师的无私帮助下我有了一些进步。现以《直线和圆的位置关系》第一课时为例,反思如下。
在初三的教学过程中,我几乎是听一节上一节。而集体备课也给了我很大的帮助。通过集体备课和听课,在《直线和圆的位置关系》这节课中,我首先引导学生回忆了点与圆的位置关系及所对应的点到圆心的距离与圆半径的数量关系。从而引出课题:直线和圆的位置关系。然后由学生*移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:
1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了两道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”“公路边的学校会不会受到噪声的影响?”培养学生解决实际问题的能力。由于这两题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。
总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的`数学教师。
《直线和圆的位置关系》教学反思3
节课的教学,我认为成功之处有以下几点:
1.由日落的三张照片(太阳与地*线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。
2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
《直线和圆的位置关系》教学反思4
这节课,我由生活中的情景——日落引入,让学生发现地*线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生*移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:
1、由日落引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到数学无处不在,无时不有。
2、在探索直线和圆位置关系所对应的数量关系时,让学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
《直线和圆的位置关系》教学反思5
《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的*台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。
亮点一:由于本节课综合性强,涉及到的知识面广,对学生的能力水*要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。
亮点二:在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。
亮点三:板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。
亮点四:充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。
亮点五:教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。
亮点六:教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的`问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。
《直线和圆的位置关系》教学反思6
本节内容是直线与圆的位置关系的第二节课。需要一个课时。
(1)在教学中,组织学生自主观察、猜想、
证明
并深刻剖析直线是圆的切线的判定条件和直线与圆相切的性质;对重要的结论及时
总结
(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。
今 后再教学本节课,应删去未能落实的教学设计,如繁杂的证明,多重视展示后进生的思维活动,有效地帮助他们形成良好的思维品质。另外,应加强对学生新建的知 识结构进行有效的跟踪、检测、调查与反馈,加强与学生交流,帮助他们扎实构建完整的知识体系,帮助他们养成观察、猜想、分析、探索、语言表达等思维习惯, 使学生在获得知识的同时,进一步培养相关的思维能力和素质.
新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”, 让学生真正“动起来”,动不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,更要落实,动静结合,收放适 度,动得有序,动而不乱。课堂教学要的不是热闹场面,而是对问题的深入研究和思考。首先要设计好问题,针对不同意见和问题引导学生展开讨论、辩论,抓住学 生发言中的问题,及时给以矫正。当教师提出问题让学生探索时,学生自己寻找答案时,要放手让学生活动,但要避免学生兴奋过度或活动过量。今后再教学本节课 仍应倡导提高学生的问题意识,以对问题的探究来构筑本节课教学的主题。但是,教师待学生的问题提完后,与学生一道对问题进行归类,找出学生思维和知识的核 心问题,以此组织课堂教学,并相机解决其他问题。仍应放权给学生,给他们想、做、说的机会,让他们讨论、质疑、交流,围绕某一个问题展开辩论。教师应当给 学生时间和权利,让学生充分进行思考,给学生充分表达自己思维的机会。但是,应关注学生的参与程度,有的学生的参与只是一种表面上的行为参与。要看学生的 思维是否活跃,关键是学生所回答的问题、提出的问题,是否建立在一定的思维层次上,是否会引起其他学生的积极思考,还是学生的自我需要。也就是说我们要关 注学生思维的状态与学习互动的状态。
《直线和圆的位置关系》教学反思7
新课程指出:学生是学习的主体,是发展的主体。在课堂教学中,教师要将课堂的主动权让给学生,作为教师应以“探究过程,探究方法,探究结果,运用结果”为主线安排教学进程,应高度重视学生的主动参与、亲自研究、动手操作,让学生从中去体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。
在《直线和圆的位置关系》这节课中,我首先由生活中的情景——日出引入,让学生发现地*线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后引入直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系。通过本节课的教学,我认为成功之处有以下几点:
1、由日出的三张照片(太阳与地*线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。
2、在探索直线和圆位置关系所对应的位置关系时,我先引导学生回顾直线和直线的位置关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3、新课标下的数学强调人人学有价值的数学,人人学有用的数学,培养思维全面,逻辑缜密的人,培养学生解决实际问题的能力。所以增加了一道题目,知识源于课本但高于课本,重点是培养学生的全面性。让乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1、学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
3、对“课堂训练”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。
总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的高中数学教师。
《直线和圆的位置关系》教学反思8
本节课教学我所面对的传授对象是聋哑学生,根据聋生的特点在学生观察教材123页三幅照片时,我立刻告诉学生你说的对,这就是直线和圆的三种关系:相交、相切和相离。我认为是数学课而不是语文课,数学课只注重学生的观察思维能力,不追求学生的语言表达能力和概括能力。
还有因为手语的手势再多再细也不可能表达出所有的抽象的甚至连丰富的语言都不好表述的东西,因此在讲解数学时,我追求细致,不要想很简单,很明显,而一带而过。因此,教学时我多次强化学生对直线与圆的三种关系的理解,为学生探究点到直线的距离d和圆半径r的大小关系。
然而数学教学时,该细的地方还是要细,这需要教师自己的把握,在学生轻而易举回答出来的问题时,有时要带领学生深入思考,并多问个为什么?比如在本课学生总结出:“圆的切线垂直于过切点的直径”时。养成学生深入思考的好习惯,不要想当然!
《直线和圆的位置关系》教学反思9
《直线与圆的位置关系》是人教版九年级(下)第三章第一节的内容,它和点与圆的位置关系、圆与圆的位置关系同是研究图形之间位置关系的重要内容。下面谈谈自己的做法和体会:
一、重视定义的形成和概括过程:
“直线与圆的位置关系”是由公共点的个数来定义的。定义的教学是在教师引导下,通过学生观察、思考、交流、概括等探究活动亲身经历概念的形成过程,形成新知识的建构。首先引导学生回忆点和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识。接着,借助多媒体引导学生观察并思考:在不同的位置关系下,直线和圆的公共点的个数有什么不同?从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征。到此,我并没有急于给出定义,而是进一步引导学生在定义的形成上下工夫,又提出两个问题:一是直线与圆有三个或三个以上公共点吗?二是通过刚才的研究,你认为直线和圆的位置关系可分为几种类型呢?分类的标准是什么?定义的教学不只是以直接感知教材为出发点,而是力图还原定义的形成过程,这样既加深了学生对定义本身的理解,又提高学生对定义形成过程中所涉及的思想、方法的认识。而多媒体课件在这里的作用主要是通过“直线动圆不动”“圆动直线不动”“圆心直线不动半径变”三种运动方式的演示,有效创设符合教学内容的情景,把知识的形成过程直观化,提高学生的兴趣,增强学生的参与性。
二、重视定理的发现和总结过程:
本课内容的第二个知识点是运用圆心到直线的距离与半径的大小关系来判定直线与圆的位置关系,并反过来得到直线与圆的位置关系下所具有的数量特征。难点是如何引导学生去发现隐含在图形中的这两个数量并加以比较,为此,我设计了一个问题串,以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,闪现了学生思维创新的火花。
引导1:通过刚才的研究我们知道,利用公共点的个数可以判定直线与圆的位置关系,请同学想一想,能否像判定点与圆的位置关系那样,通过数量关系来判定直线与圆的位置关系?
引导2:点与圆的位置关系的判定运用了哪两个数量之间的关系?直线与圆的位置关系中可以出现哪两个量呢?
引导3:如何用图形来反映半径和圆心到直线的距离这两个量呢?
引导4:如何由数量关系并结合图形判定相应的位置关系呢?
引导5:运用数量关系判定直线与圆的位置关系以及点与圆的位置关系,这两者之间有何区别与联系?
引导6:以上三个判定反过来成立吗?
通过以上问题,学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,这无疑促进学生在学会数学的过程中顺利地向“会学”的方向发展。而多媒体课件在这里的作用在于把“形”和“数” 的关系及其变化动态呈现在屏幕上,成为学生探索验证的好帮手。
三、尊重学生的主体地位:
教学设计应为学生自主学习,实现知识的建构服务。这节课为学生提供了大量问题情境、活动方式,使学生通过“做一做”“想一想”“练一练”“议一议”充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。而多媒体的介入,为学生实现“意义建构”创设了更为逼真的“情景”,改善了认知环境,有利于提高课堂效率,有利于学生思维和技能的训练。如“议一议”:(1)已知⊙O半径为4cm,直线l上的点A满足OA=4cm,能否判定直线l和⊙O相切?为什么?
(2)已知⊙O半径为4cm,直线l上的点A满足OA=5cm,能否判定直线l和⊙O相离?为什么?
此题重在强调判定方法中圆心到直线的距离,利用多媒体演示,更直观地说明:(1)中当OA不是圆心到直线的距离时,直线l和⊙O相交;当OA是圆心到直线距离时,直线l是⊙O相切。(2)方法同(1),通过此题练习提高了学生思维的深刻性和批判性。
四、重视规律的揭示和提炼过程:
某个数学知识的教学可以在短期内完成,数学技能也可通过强化训练形成,而掌握学习的规律是一个长期渐进的过程,我认为教师在教学过程中应增强揭示规律的意识,引导学生从学习、研究的过程加以提炼,通过日积月累产生认识的飞跃。因此,在回顾与反思中,我组织学生以小组交流的形式讨论以下问题:一是通过刚才的学习,你对如何研究图形之间的位置关系有什么收获和体会?二是“点与圆的位置关系”与“直线与圆的位置关系” 有哪些联系?通过比较你有何启发?这一设计的做法虽小,作用却大,它使学生的认识上升到一个新的高度。也确保了学生在学会数学的过程中顺利地向“会学”的方向发展。
五、拓宽学习的时间和空间:
课后作业的设计不仅要达到巩固知识的目的,更重要的是有研究性和探索性。本节的课后作业有一道探究价值的题目:在Rt△ABC 中,∠C=Rt∠,AC=8cm,BC=6cm,若要以C为圆心,R为半径画圆,请根据下列条件,求半径R的值或取值范围。 1、AB与圆相离 2、AB与圆相交 3、AB与圆相切。
学生需通过动手动脑来完成,使学生的探索精神由课内延伸到课外。多媒体课件的作用在于通过圆的半径的动态变化,为学生研究直线与圆的位置关系提供思路和分类方法。
总之,通过这节课的教学,力图达到以下三个目标:一是知识目标,就是使学生理解概念,掌握性质和判定并能够利用它们分析问题和解决问题;二是能力目标,培养学生运用迁移、联想、类比、化归、数形结合等数学思想方法发现问题解决问题的能力和创新能力;三是情感目标,通过学生的主动参与,在学会数学的过程中向“会学”的方向发展,培养运动、变化、发展的辨证唯物主义观点。
《直线和圆的位置关系》教学反思10
本节课的教学我采用先亮标,亮自学提示及检测题的形式让学生先自学。依据自学检测题检验学生自学结果。然后精讲了切线性质定理及分析两种证明方法。然后结合小黑板练习巩固提高这节知识。
讲课时我改变了原来讲后再练的方式,采用了讲评一个知识点后配基础练习题,巩固此知识点的方法。避免讲后再练,练习与知识的脱节,练习紧跟。精讲知识后,再配以比基础题(巩固基础知识点)层次高的两组练习,让学生先做,采用举手的方式调查学生自己运用知识解决问题的情况。讲前85%的同学都举手做完,还有个别同学做到运用灵活方法解决问题。中午三道作业学生掌握良好。其余学生在我的讲解下也掌握今天的内容,会运用两种方法判断直线和圆的位置关系。知道有切线可连圆心和切点得垂直关系这种基本辅助线。
本节课的教学总的来说很顺利,学生掌握良好,由于课程标准对于本节课要求不高,紧扣标准,走进中招。本节课若能再配合课后检测题,及时精确把握,学生掌握情况会更完美。
重建:讲课前,先亮标,亮自学提示及检测题,以问题形式精讲切线性质定理及证明。配合练习、提高练习,下课前5分钟配简单检测题以便更全面把握学生掌握的情况。
教师的行为直接影响着学生的学习方式,要让学生真正成为学习的主人,积极参与课堂学习活动,因此在教学中让学生想象、观察、动手实践、发现内在的联系并利用类比归纳的方法,探索规律,指导学生合作、研究并尝试用学到的知识解决实际问题。
圆周角和圆心角的关系教学反思3篇(扩展5)
——生活中的圆周运动教学反思5篇
生活中的圆周运动教学反思1
今天讲了“生活中的圆周运动”的第一课时。本文是对该节课的教学反思,具体内容如下:
一、对该节课人教版新教材内容的理解:
在老人教版中离心运动与圆周运动实例是分开编写。而在新课标人教版中,编写者将二者合二为一。因此本节课的课堂教学内容特别多,同时与生活实际联系特别紧密。如果在上课过程中,一节课将教材的内容上完,可能学生对知识重难点难以把握,同时在上课的过程中,学生在课堂的探究过程与探究时间将受到极大限制。因此本人决定将本节课分为两个课时进行安排。
二、本节课设计思想:
以新课程的三维目标为依据,重视学生的学习过程,体现“以学生为主体,以教师为主导”的新型师生关系,强化情感、态度与价值观的教育,发展学生的科学素养。力图在教学中营造活跃、宽松的学习氛围,鼓励学生合作探究,为学生与学生、教师与学生的交流与合作创设更多的机会,也为教学活动中的“生成”搭建舞台。其设计特色有三:其一,密切联系和关注时代的发展和社会的进步(如火车提速);其二,将生活中的常见物品改装成实验器材为教学服务,从而突破教学难点;其三,在整堂课的教学过程中,始终以“向心力的来源”为暗线贯穿整个教学过程。课后本人认为在该节课的课堂教学过程中还是比较充分反映本节课的教学设计思想。
三、教学模式的创新:
在本节课中较好的实现了发现式的教学模式,将生活中常见现象引入课堂,还原物理知识发现与研究的过程与情景,引导学生进行探究与理解。本节课设计上分为三个版块,分别由三个情景引入。
第一个情景“汽车在过弯时由于速度过快而会发生恻滑”
第二个情景“沿火车行驶方向的两根轨道的内侧,其中一根内侧非常光亮,几乎无铁锈,而另一根内侧有铁锈与几乎没有火车行驶走过的轨道相同”、
第三个情景“当你在骑自行车快速通过凹凸不*的路面时的感觉”这三个情景。通过每个情景去引导、启发学生思考物理知识的形成过程。在每个版块的具体教学中注重从生活走向物理,从物理走向社会。
在教学设计中,期望通过汽车拐弯问题的分析,为学生自主探究火车拐弯的问题搭设好台阶,使知识的探究过程成螺旋上升。并紧密联系到我国最近的火车大提速,由于赋予了实践的背景,有效地调动了学生的积极性,物理知识被活化了,学生跟物理学的距离便一下子拉近了许多,同时,也让学生因为当了一回工程师而获得了一次很好的情感体验。
四、充分利用课程资源:
在新课程强教学过程中强调充分利用课程资源,能够利用多媒体资源,调动学生的探究热情。虽然本节课不会在课堂上给出答案,但通过本节课的学习,在课后学生通过研究性作业,能够通过已有知识对水流星以及过模型作出解答,同时为下节课的学习作好铺垫。
如在本节课中,汽车过拱桥时的失重与超重现象在现实中并不明显,学生较难体会到,即使学生体会到了也不太会跟物理知识联系起来,为了突破这一教学难点,本人想到先利用生活化的情景“骑自行车快速通过凹凸不*的路面时的感觉来”激发学生的学习兴趣,再利用演示实验让学生感知示重的变化,再次激发学生的探究欲望,从而达到生活实际现象与物理知识相联系的目的。在这里如果有现代化的技术和设备为物理教学服务效果会更好,但是传感器要走进*常课堂还有很长一段路程。
五、注意教材前后联系,提前设置物理情景让学生课后探究:
在本教材使用中,物理教师应重视物理知识间存在的紧密联系,为了使学生更容易理解和掌握知识的来龙去脉,物理教学要有全局的观念,当前知识的教学要有利于学生学习后续知识,合理设置“接口”。在本节课中本人为第二课时预留了几个接口:如地球可以看作一个巨大的拱形桥,如果地面上行驶的汽车速度足够大压力为0可以飞离地球而成为人造卫星,这时,地球这座拱桥就“形同虚设”了,相关的知识我们将会在后面学习。汽车在过弯时速度过快恻滑为学习离心运动作好铺设,水流星的引入为后面学习竖直面内的圆周运动作好铺设,同时可作为学生课后的研究性学习作业。
在新课程教学过程中强调学生能将物理所学知识学以致用,因此老师在课堂教学中尽量设计一些研究性学习作业让学生在课后能利用所学知识进行解释与理解。如在本节课中本人设计了两个研究性学习作业:
研究性作业1:利用假期时间,实地调查某公路拐弯处的倾斜情况,并查看路边的限速牌,运用所学的知识,从理论上分析其限速值的合理性并作出评价,填写学生探究性学习用表。
研究性作业2:从理论上分析水流星与过山车,在最高点不会掉下的原理?请思考在实际生活中还有那些运动或游戏可以归为此模型。
在教学中注重课前有计划、有目的指导学生预习,在教学过程中注重引导与启发学生将探究、归纳与交流有机结合,在教学中应充分展示过程和方法,实现学习方式的多样化。在学生自主探究与归纳的基础上引导学生进行体验感悟,巩固与拓展。教学基本程序如下:创设情境,提出问题→引导分析,提出假设→收集资料,引导验证→师生交流,总结提高。在教学过程中,上述步骤由任课教师根据具体教学情景与教学内容,安排其中的某几个部分进行物理教学。但在本节课中仍有部分问题存在,最突出问题在与本人在课堂组织的过程中,在学生的自主探究、自主归纳上还放的不够,老师在课堂中出现的镜头偏多。同时在上课过程中还是有老师先将思路设计好,在教学过程中有意识的在引导学生按着老师的思路进行思考的倾向。因此在教学活动探究过程中,师生双方在思想上碰撞的火花不够,课堂探究氛围稍显不浓。
在教学活动中,既要强调学生的主体性和师生的互动作用,又要看到探究是它的重要特征,只有开展探究性学习才能真正调动学生的学习积极性,才能充分发挥师生的双向互动作用,让学生自主地完成知识建构,获得知识、能力、品德上的全面发展。现代教学理论认为,在教学过程中,教师不再是知识的提供者,而是一个“协助者”,要为学生创设良好的学习环境,设置恰当的问题情境,诱发学生在认知上冲突,引导学生通过自主活动去建构起自己新的认知结构,从而扎实地培养学生的创新精神和实践能力。
生活中的圆周运动教学反思2
《生活中的圆周运动》是《曲线运动》的最后一节,在第一课时的教学中,主要分析了火车过弯道,汽车过拱形桥这两个案例,通过对这两个案例的分析,使学生深入理解圆周运动的规律,并结合日常生活中的某些生活体验,加深物理知识在头脑中的印象。本节课基本达到了学习目标。在知识和能力方面:学生基本学会了分析常见圆周运动向心力的来源,掌握了向心力公式的运用;在过程和方法方面:通过合作探究,注意提高学生的团队意识,提高了学生综合应用知识解决问题的能力;在情感态度与价值观方面:激发学生的学习兴趣,注意培养学生理论解决问题的能力。
授完圆周运动的案例分析,通过课后与学生交谈和自己的思考,现将本节课教学反思总结如下:
本节课的做的较好的方面有:
第一: 引入新课自然流畅,在复习了向心力、向心加速度等知识以后,让学生进一步巩固匀速圆周运动物体力与运动的关系:做匀速圆周运动的物体一定有向心力,且mv2F?这时,列举一些做匀速圆周运动物体的案例: 火车翻车,汽车弯道、过山车(最R
高点)等。这些做圆周运动物体的向心力是什么力,它的大小跟描述圆周运动量之间有怎样的关系呢?利用问题带领学生进入新课学习。这样引入新课能够激发学生的学习兴趣,引入流畅自然。
第二: 引导学生思考,拓展知识时,启发式教学应用恰当。本课在引入新课后对圆周运动的向心力从供求两个方面分析,圆周运动需要向心力,需要的向心力由物体受到的合外力提供;圆周运动是由每一段小的圆弧形的运动所组成的,每一段小的圆弧的运动可以近似的看成是圆周运动的一部分, 引导学生思考并拓展出新知识。为分析火车转弯时对轨道的侧压力和汽车过拱形桥的中的失重和超重问题做知识准备。在突破难点时分解知识难度,使学生更容易接受。
第三: 重点突出难点突破方法得当: 在火车转弯这个重点加难点问题上,先研究火车转弯的向心力(给出火车转弯处内外轨示意图)和力与运动的关系,然后提出铁路提速在转弯处会产生什么影响? (给出火车转弯处铁轨和轮缘示意图) 引导学生运用拓展知识思考解决该问题。为了适应铁路提速,如果调整转弯处,可以采取那些措施?让学生进一步熟悉v?gRtan?。对汽车过拱形桥的问题,首先让学生分别讨论分析过凸形桥时所需的向心力的方向和受力,再通过所需向心力由合力提供分析桥对汽车的支持力与汽车自身重量的关系。让学生自主分析汽车过凹形桥时对桥的压力,进一步加强学生对知识的理解和应用能力。在教学中运用利用实例类比、理论分析、借助图形等方法从浅入深,从易到难,层层分解来突破难点。
第四:考虑到学生的主体地位,教学中设计了一些简单的,旨在提高学生的学习兴趣的问题,如:观察高速路弯道内外侧高度有什么不同,火车在什么时候容易翻车等问题。也设计了一些需要思考,团体讨论的问题,如:火车如果在水*的弯道上行驶的时候,由什么来提供向心力;如果让外侧比内侧高,能否让重力和支持力的合力来提供向心力,如果可以,对这样的弯道上,火车的速度要怎么规定最合理等问题。让最先讨论出答案的小组来讲解,其他小组可以提问,补充,提高了学生的积极性。
本节课教学不足有:
第一: 学生参与不足。首先,虽然考虑到学生的主体作用,但在讨论的过程中,优生占据了主要作用,对学困生的关注不够,学困生的学习积极性不高,通过作业反馈的信息了解到许多学生对这节知识的掌握并不理想。这说明他们学的很被动,并没有参与到教学中来。课堂的教学目的,是让学生成为知识的拥有者。他们只有在参与中获取知识,发展知识,只有让所有学生参与到教学中才能更好的体现学生的主体作用。
第二:在教学的过程中对解题的规范要求的不够。在课堂上,学生能够板书的就让学生板书,对学生做的不完整的地方,做了补充后,板书不够规范,有点凌乱。在解题完成后没有强调解题严谨,规范在解决物理问题中的重要性。
第三:在教具的准备上不够完善,虽然图片资料比较丰富,但音频材料少,学生能够动手操作的实物材料更是不足。
通过对本节课的教学后反思,我从中得到如下启示:
第一: 学生是学习的主体,一定要让学生真正成为课堂的主体。 在今后的教学中,引导学生积极参与教学,让他们多动手多动脑多开口成为课堂的主体。学生能分析的,让学生分析,学生能总结的,让学生总结,学生能板演的,让学生板演。引导学生主动学习,养成良好的自主学习习惯,在教学中会收到事半功倍的效果,更有利于学生的对知识的巩固和拓展。
第二:教师做好课堂教学的组织者,引导者。 在教学中,尽可能的创设物理情景,激发学生的兴趣,引导他们积极思考,及时有针对性地指导学生的学习。在教学中积极了解学生,对学生出现的错误,通过引导、启发,使他们走出误区。成为真正的知识拥有者,并组织好课堂教学的全过程。
第三:教学中尽量多引用身边的物理现象和科技新成果,教学中引用身边的物理现象,这更容易激发学生的兴趣,使学生产生好奇感,从而引发学生积极思考。这样既可以让学生感受到物理就在我们身边,它并不遥远,是一些实实在在的东西,又能使他们对物理产生亲切感,从而增加学习好物理的动力和信心,更重要的是能培养学生观察生活现象、理论联系实际的能力和勤于思考的良好习惯。而科技新成果的应用,会增强学生的新奇感,激发学生学习思考的能动性与主动性,提高学生分析问题,解决问题的能力。
总之,在今后的教学中,我将扬长避短,吸收教研教改新成果,以新课标的教学理念和要求来组织每一节课。
生活中的圆周运动教学反思3
今天讲了“生活中的圆周运动”的第一课时。本文是对该节课的教学反思,具体内容如下:
一、对该节课人教版新教材内容的理解:
在老人教版中离心运动与圆周运动实例是分开编写。而在新课标人教版中,编写者将二者合二为一。因此本节课的课堂教学内容特别多,同时与生活实际联系特别紧密。如果在上课过程中,一节课将教材的内容上完,可能学生对知识重难点难以把握,同时在上课的过程中,学生在课堂的探究过程与探究时间将受到极大限制。因此本人决定将本节课分为两个课时进行安排。
二、本节课设计思想:
以新课程的三维目标为依据,重视学生的学习过程,体现“以学生为主体,以教师为主导”的新型师生关系,强化情感、态度与价值观的教育,发展学生的科学素养。力图在教学中营造活跃、宽松的学习氛围,鼓励学生合作探究,为学生与学生、教师与学生的交流与合作创设更多的机会,也为教学活动中的“生成”搭建舞台。其设计特色有三:其一,密切联系和关注时代的发展和社会的进步(如火车提速);其二,将生活中的常见物品改装成实验器材为教学服务,从而突破教学难点;其三,在整堂课的教学过程中,始终以“向心力的来源”为暗线贯穿整个教学过程。课后本人认为在该节课的课堂教学过程中还是比较充分反映本节课的教学设计思想。
三、教学模式的创新:
在本节课中较好的实现了发现式的教学模式,将生活中常见现象引入课堂,还原物理知识发现与研究的过程与情景,引导学生进行探究与理解。本节课设计上分为三个版块,分别由三个情景引入。
第一个情景“汽车在过弯时由于速度过快而会发生恻滑”
第二个情景“沿火车行驶方向的两根轨道的内侧,其中一根内侧非常光亮,几乎无铁锈,而另一根内侧有铁锈与几乎没有火车行驶走过的轨道相同”、
第三个情景“当你在骑自行车快速通过凹凸不*的路面时的感觉”这三个情景。通过每个情景去引导、启发学生思考物理知识的形成过程。在每个版块的具体教学中注重从生活走向物理,从物理走向社会。
在教学设计中,期望通过汽车拐弯问题的分析,为学生自主探究火车拐弯的问题搭设好台阶,使知识的探究过程成螺旋上升。并紧密联系到我国最近的火车大提速,由于赋予了实践的背景,有效地调动了学生的积极性,物理知识被活化了,学生跟物理学的距离便一下子拉近了许多,同时,也让学生因为当了一回工程师而获得了一次很好的情感体验。
四、充分利用课程资源:
在新课程强教学过程中强调充分利用课程资源,能够利用多媒体资源,调动学生的探究热情。虽然本节课不会在课堂上给出答案,但通过本节课的学习,在课后学生通过研究性作业,能够通过已有知识对水流星以及过模型作出解答,同时为下节课的学习作好铺垫。
如在本节课中,汽车过拱桥时的失重与超重现象在现实中并不明显,学生较难体会到,即使学生体会到了也不太会跟物理知识联系起来,为了突破这一教学难点,本人想到先利用生活化的情景“骑自行车快速通过凹凸不*的路面时的感觉来”激发学生的学习兴趣,再利用演示实验让学生感知示重的变化,再次激发学生的探究欲望,从而达到生活实际现象与物理知识相联系的目的。在这里如果有现代化的技术和设备为物理教学服务效果会更好,但是传感器要走进*常课堂还有很长一段路程。
五、注意教材前后联系,提前设置物理情景让学生课后探究:
在本教材使用中,物理教师应重视物理知识间存在的紧密联系,为了使学生更容易理解和掌握知识的来龙去脉,物理教学要有全局的观念,当前知识的教学要有利于学生学习后续知识,合理设置“接口”。在本节课中本人为第二课时预留了几个接口:如地球可以看作一个巨大的拱形桥,如果地面上行驶的汽车速度足够大压力为0可以飞离地球而成为人造卫星,这时,地球这座拱桥就“形同虚设”了,相关的知识我们将会在后面学习。汽车在过弯时速度过快恻滑为学习离心运动作好铺设,水流星的引入为后面学习竖直面内的圆周运动作好铺设,同时可作为学生课后的研究性学习作业。
在新课程教学过程中强调学生能将物理所学知识学以致用,因此老师在课堂教学中尽量设计一些研究性学习作业让学生在课后能利用所学知识进行解释与理解。如在本节课中本人设计了两个研究性学习作业:
研究性作业1:利用假期时间,实地调查某公路拐弯处的倾斜情况,并查看路边的限速牌,运用所学的知识,从理论上分析其限速值的合理性并作出评价,填写学生探究性学习用表
研究性作业2:从理论上分析水流星与过山车,在最高点不会掉下的原理?请思考在实际生活中还有那些运动或游戏可以归为此模型。
在教学中注重课前有计划、有目的指导学生预习,在教学过程中注重引导与启发学生将探究、归纳与交流有机结合,在教学中应充分展示过程和方法,实现学习方式的多样化。在学生自主探究与归纳的基础上引导学生进行体验感悟,巩固与拓展。教学基本程序如下:创设情境,提出问题→引导分析,提出假设→收集资料,引导验证→师生交流,总结提高。在教学过程中,上述步骤由任课教师根据具体教学情景与教学内容,安排其中的某几个部分进行物理教学。但在本节课中仍有部分问题存在,最突出问题在与本人在课堂组织的过程中,在学生的自主探究、自主归纳上还放的不够,老师在课堂中出现的镜头偏多。同时在上课过程中还是有老师先将思路设计好,在教学过程中有意识的在引导学生按着老师的思路进行思考的倾向。因此在教学活动探究过程中,师生双方在思想上碰撞的火花不够,课堂探究氛围稍显不浓。
在教学活动中,既要强调学生的主体性和师生的互动作用,又要看到探究是它的重要特征,只有开展探究性学习才能真正调动学生的"学习积极性,才能充分发挥师生的双向互动作用,让学生自主地完成知识建构,获得知识、能力、品德上的全面发展。现代教学理论认为,在教学过程中,教师不再是知识的提供者,而是一个“协助者”,要为学生创设良好的学习环境,设置恰当的问题情境,诱发学生在认知上冲突,引导学生通过自主活动去建构起自己新的认知结构,从而扎实地培养学生的创新精神和实践能力。
生活中的圆周运动教学反思4
1、本节课通过对几个实际问题的分析,使学生明确了具体问题必须具体分析,理解物理与生活的联系,建立正确的物理情景,学会用科学、合理的方法处理实际问题。理解向心力是一种效果力,而不是物体另外受到的一个力,并结合牛顿运动定律分析具体问题中向心力的来源。通过对离心现象的实例分析,提高学生综合应用知识解决物理问题的能力。
2、对于向心力的来源问题是学生学习过程中的一个难点,学生常常误认为向心力是一种特殊的力,是做匀速圆周运动的物体另外受到的力。就如何正确认识向心力的来源,我在教学中通过多分析实例使学生获得正确认识。同时让学生明确这里的分析和计算所依据的运动规律—一牛顿运动定律,只是这里的加速度从效果上命名为向心加速度了。
3、关于向心力和向心加速度的公式也适用于变速圆周运动的问题,通过分析物体在特殊点(该处物体所受合外力全部提供向心力,无切向分力)的向心力和向心加速度,分析了汽车通过拱桥(凸形桥和凹形桥)顶点(最高点和最低点)时的力、速度、加速度等问题。汽车通过拱桥的运动过程是变速圆周运动,只分析汽车过顶点时的情况(这时汽车所受的合外力在一条直线上,全部用来提供向心力),然后在例题和练习中再扩展分析一般情况下的变速圆周运动的问题,同时提及切向分力和法向分力,以开阔学生视野。
4、例题和练习的选择,我主要是围绕教材上两个示例选择适当的例子,从水*方向的圆周运动(火车转弯类型)和竖直方向的圆周运动(汽车过桥类型)两类问题,使学生通过具体问题,明确向心力的来源问题和处理方法。
生活中的圆周运动教学反思5
今天讲了“生活中的圆周运动”的第一课时。本文是对该节课的教学反思,具体内容如下:
一、对该节课人教版新教材内容的理解:
在老人教版中离心运动与圆周运动实例是分开编写。而在新课标人教版中,编写者将二者合二为一。因此本节课的课堂教学内容特别多,同时与生活实际联系特别紧密。如果在上课过程中,一节课将教材的内容上完,可能学生对知识重难点难以把握,同时在上课的过程中,学生在课堂的探究过程与探究时间将受到极大限制。因此本人决定将本节课分为两个课时进行安排。
二、本节课设计思想:
以新课程的三维目标为依据,重视学生的学习过程,体现“以学生为主体,以教师为主导”的新型师生关系,强化情感、态度与价值观的教育,发展学生的科学素养。力图在教学中营造活跃、宽松的学习氛围,鼓励学生合作探究,为学生与学生、教师与学生的交流与合作创设更多的机会,也为教学活动中的“生成”搭建舞台。其设计特色有三:其一,密切联系和关注时代的发展和社会的进步(如火车提速);其二,将生活中的常见物品改装成实验器材为教学服务,从而突破教学难点;其三,在整堂课的教学过程中,始终以“向心力的来源”为暗线贯穿整个教学过程。课后本人认为在该节课的课堂教学过程中还是比较充分反映本节课的教学设计思想。
三、教学模式的创新:
在本节课中较好的实现了发现式的教学模式,将生活中常见现象引入课堂,还原物理知识发现与研究的过程与情景,引导学生进行探究与理解。本节课设计上分为三个版块,分别由三个情景引入。
第一个情景“汽车在过弯时由于速度过快而会发生恻滑”
第二个情景“沿火车行驶方向的两根轨道的内侧,其中一根内侧非常光亮,几乎无铁锈,而另一根内侧有铁锈与几乎没有火车行驶走过的轨道相同”、
第三个情景“当你在骑自行车快速通过凹凸不*的路面时的感觉”这三个情景。通过每个情景去引导、启发学生思考物理知识的形成过程。在每个版块的具体教学中注重从生活走向物理,从物理走向社会。
在教学设计中,期望通过汽车拐弯问题的分析,为学生自主探究火车拐弯的问题搭设好台阶,使知识的探究过程成螺旋上升。并紧密联系到我国最近的火车大提速,由于赋予了实践的背景,有效地调动了学生的积极性,物理知识被活化了,学生跟物理学的距离便一下子拉近了许多,同时,也让学生因为当了一回工程师而获得了一次很好的情感体验。
四、充分利用课程资源:
在新课程强教学过程中强调充分利用课程资源,能够利用多媒体资源,调动学生的探究热情。虽然本节课不会在课堂上给出答案,但通过本节课的学习,在课后学生通过研究性作业,能够通过已有知识对水流星以及过模型作出解答,同时为下节课的学习作好铺垫。
如在本节课中,汽车过拱桥时的失重与超重现象在现实中并不明显,学生较难体会到,即使学生体会到了也不太会跟物理知识联系起来,为了突破这一教学难点,本人想到先利用生活化的情景“骑自行车快速通过凹凸不*的路面时的感觉来”激发学生的学习兴趣,再利用演示实验让学生感知示重的变化,再次激发学生的探究欲望,从而达到生活实际现象与物理知识相联系的目的`。在这里如果有现代化的技术和设备为物理教学服务效果会更好,但是传感器要走进*常课堂还有很长一段路程。
五、注意教材前后联系,提前设置物理情景让学生课后探究:
在本教材使用中,物理教师应重视物理知识间存在的紧密联系,为了使学生更容易理解和掌握知识的来龙去脉,物理教学要有全局的观念,当前知识的教学要有利于学生学习后续知识,合理设置“接口”。在本节课中本人为第二课时预留了几个接口:如地球可以看作一个巨大的拱形桥,如果地面上行驶的汽车速度足够大压力为0可以飞离地球而成为人造卫星,这时,地球这座拱桥就“形同虚设”了,相关的知识我们将会在后面学习。汽车在过弯时速度过快恻滑为学习离心运动作好铺设,水流星的引入为后面学习竖直面内的圆周运动作好铺设,同时可作为学生课后的研究性学习作业。
在新课程教学过程中强调学生能将物理所学知识学以致用,因此老师在课堂教学中尽量设计一些研究性学习作业让学生在课后能利用所学知识进行解释与理解。如在本节课中本人设计了两个研究性学习作业:
研究性作业1:利用假期时间,实地调查某公路拐弯处的倾斜情况,并查看路边的限速牌,运用所学的知识,从理论上分析其限速值的合理性并作出评价,填写学生探究性学习用表
研究性作业2:从理论上分析水流星与过山车,在最高点不会掉下的原理?请思考在实际生活中还有那些运动或游戏可以归为此模型。
在教学中注重课前有计划、有目的指导学生预习,在教学过程中注重引导与启发学生将探究、归纳与交流有机结合,在教学中应充分展示过程和方法,实现学习方式的多样化。在学生自主探究与归纳的基础上引导学生进行体验感悟,巩固与拓展。教学基本程序如下:创设情境,提出问题→引导分析,提出假设→收集资料,引导验证→师生交流,总结提高。在教学过程中,上述步骤由任课教师根据具体教学情景与教学内容,安排其中的某几个部分进行物理教学。但在本节课中仍有部分问题存在,最突出问题在与本人在课堂组织的过程中,在学生的自主探究、自主归纳上还放的不够,老师在课堂中出现的镜头偏多。同时在上课过程中还是有老师先将思路设计好,在教学过程中有意识的在引导学生按着老师的思路进行思考的倾向。因此在教学活动探究过程中,师生双方在思想上碰撞的火花不够,课堂探究氛围稍显不浓。
在教学活动中,既要强调学生的主体性和师生的互动作用,又要看到探究是它的重要特征,只有开展探究性学习才能真正调动学生的学习积极性,才能充分发挥师生的双向互动作用,让学生自主地完成知识建构,获得知识、能力、品德上的全面发展。现代教学理论认为,在教学过程中,教师不再是知识的提供者,而是一个“协助者”,要为学生创设良好的学习环境,设置恰当的问题情境,诱发学生在认知上冲突,引导学生通过自主活动去建构起自己新的认知结构,从而扎实地培养学生的创新精神和实践能力。
圆周角和圆心角的关系教学反思3篇(扩展6)
——《三角形三边之间的关系》教学反思3篇
《三角形三边之间的关系》教学反思1
《三角形三条边之间的关系》是人教版小学数学四年级下册第五单元62页的内容。本节课的设计,无论从教学内容的处理、教学方法的选择,还是教师角色的转变,学习方式的变革方面,都做了一些有益的`尝试和探索,主要有以下几点:
一、尊重学生的认知规律,合理运用教材资源。
本节课是在认识了什么是三角形的基础上进行教学的。从实验入手,让学生通过动手围一围小棒,看是否能围成三角形,引导学生经历“发现问题、大胆猜测、操作验证、修改完善、得出结论”的探究过程,最终发现三角形三边之间的特殊关系。这样教学符合学生的认知规律,即增加了兴趣,又使学生积累了大量的操作经验和研究经验。
二、引领学生自主探究,注重解决问题策略的指导。
首先,借助复习什么是三角形,提出一个值得大家去思考和研究的问题“用三根小棒一定都能围成三角形吗?”通过实验发现两边之和小于第三边时围不成,而两边之和大于第三边时能围成三角形。继而引发学生大胆猜测:两边之和等于第三边时能围成吗?通过操作验证,发现不能。只有在两边之和大于第三边时才能围成。有意识的让学生经历研究解决问题的一般过程,对学生来说这是一种技能的积累、经验的积累。
三、密切联系生活实际,激发学生学习兴趣。
在这节课的练习中,利用学生的生活经验,设计了一个学生熟悉的情景,让学生有一种亲切感,激发了学生的学习兴趣。另外,让学生用本节课所学的知识去解决生活当中的数学问题,使学生感受到了数学不是凭空而来的,它是生活的需要。
总之,设计意图是非常好的,但是在实际教学中也出现了一些问题,比如:提供给学生的学具(吸管)有些软,剪成3段后围三角形需要用手不断调整,如果再给一段铁丝让学生把三段穿进去,去折三角形,便于固定,效果会更好。
圆周角和圆心角的关系教学反思3篇(扩展7)
——《角的分类和画角》教学反思3篇
《角的分类和画角》教学反思1
学生在之前三年级时已经直观认识了直角、锐角、钝角,本课是在角的度量的基础上学习的,通过用活动角做角、用纸折角、用量角器画角等各种活动,认识直角、锐角、钝角、*角、周角的大小以及它们之间的关系,会用三角尺画出一定度数的角,能初步的估计角的大小。
本课内容分为两个环节,第一环节是认识各种角,第二环节是画角。对于第一部分的学习,我让学生带了学具盒中的活动角,通过边操作边观察,感受角是可以活动的,之后慢慢展开,得到由小到大的五种角,学生很快发现1周角=2*角=4直角,还列举了一种活动的学生尺展开是*角、钟面上的时针与分针6时的夹角为*角,12时的夹角为周角等等,接着我又让学生通过折正方形纸,再次感受这3个角之间的大小关系,没想到学生还折出了30°角(把90°角*均折成3份)和45°角(把90°角再次对折),还展开根据3个45°角指出了135°的钝角,真是在我的预料之外,没想到给他们一张小小的纸,他们竟折出了5种认识的角。这部分的教学比较顺利,学生也掌握的较好。第二部分画角,先是根据上节课记住的三角板上的三个角来画90°、30°、60°和45°的角,比较简单,主要问题是部分学生的三角尺头上磨圆了,所以画出的角的顶点不够尖。接下来用量角器画角,我先让学生尝试画75°的.角,没想到大部分同学根据量角的方法都能画出来,有的同学还觉得画角比量角简单,于是一起总结了画角的步骤“点点对齐,边边对齐,找刻度,连线”,画角这一环节也算是顺利的。
新课的内容就这样结束了,可随之而来的课后一大堆练习,又让我们头疼。《补充习题》上,要求用量角器量出2时、3时、4时、5时、11时30分钟面上时针和分针组成的角,由于要求是用量角器量,由于角的边比较的短,需要延长后再量,结果学生量出的角度是五花八门,而且误差都在5°左右(*时量角我们允许的误差是1——2度),5时很多学生量出是145°、155°,11时30分的答案更多,有160°、150°、155°、170°各种各样都有。于是只能和学生一起来寻找最佳的方法,联系学生之前举的例子,12时可以看作是周角,而钟面上有12个大格,3时和9时正好是直角90°,学生马上想出可以计算每个大格的度数,用360°÷12=30°,所以根本就不需要量,只要数一下时针和分针之间是几大格就可以了,半大格是15°,所以11时30分应该是165°。练习四中,要求学生用两块三角板拼角,并且说说能拼出哪些度数的角?就这道题目足足用了半节课,先是用两个角合起来,先拼再交流,得到可以拼出180°、150°、135°、120°、105°、75°的角,接着再让学生思考,还能用三角板画出几度的角,得到可以用60°-45°=15°或45°-30°=15°的角,虽然花了很多的时间来研究,可是练习上出现用三角板画角时,发现好多同学还是习惯在拿量角器画角,真不知道该怎么要求他们。
《补充习题》上还出现了由两条交叉的直线引出的4个角,知道了一个角的度数,求出另外3个角的度数,还要说说发现了什么?解决这道题目,要根据一直线上的两个角的度数和是180°,来求出另外的一个角,在全部算出来后,学生会发现4个角的度数合起来正好是一个周角,还发现对对面的角的度数是相同的,为以后的学习打下了一定的基础。
圆周角和圆心角的关系教学反思3篇(扩展8)
——同角三角函数的基本关系教学反思3篇
同角三角函数的基本关系教学反思1
我上了一节《同角三角函数的基本关系(1)》一课,感谢数学组老师给我评课,让我收获很大,自己仔细想想,自己的课存在很多的问题:
1、对同角强调不够。提问的角度和质量,还需要有更深刻和严谨的思考。有老师提出应该讲关系式前强调一下同角,给出了基本关系式再一次强调同角。
2、讲例题时,我采取的方式是让学生先做再将。有老师提出先讲例题,再做,让学生知道规范形式和具体的书写要求。在讲例题时,运用基本关系式,应该先求sin 2 α,cos 2 α,再根据角的范围求角α,COSα的值。
3、对于本节课的同角三角函数的关系的应用中,求值是重点,而难点已知正切值,如何求解正弦值和余弦值。只是在练习2才体现。应该总结为变式1中使用了分类讨论的思想 。对于题干的形式,要引导学生观察,反复观察,对于公式及其变形要反复强化,重点在观察,而在这里,我强调的不够。
4、对公式的变形、公式的理解强调不够。公式应用可以顺用、逆用、变形用,三者关系要把握好。
5、课堂中的激情不够,没有给学生更强的感染力,课堂感觉还是**,没有给人以心跳的感觉。
6、课堂上虽有调动学生积极性的意识,但是手段还是过于单一,教学方法不够灵活。学生的复述就是很好的方法。
7、整堂课的设计没有把握好时间,节奏没有把握好,造成前松后紧,而导致没有完成教学任务。最后设计的经典部分没有讲。
通过这次课的"准备和反思,自己领悟了很多,教学需要精心的设计,耐心的思考,深刻的反思,学习。自己的教学水*需要提高,处理课堂的问题需要成熟,自己的业务水*需要尽快进步。通过这次课,让我又一次成长,在今后的教学中,我会更加努力,用心去教学,用爱去教育。
圆周角和圆心角的关系教学反思3篇(扩展9)
——直线和圆的位置关系教学反思
直线和圆的位置关系教学反思
身为一位优秀的教师,我们的任务之一就是课堂教学,通过教学反思可以很好地改正讲课缺点,那要怎么写好教学反思呢?下面是小编帮大家整理的直线和圆的位置关系教学反思,仅供参考,大家一起来看看吧。
直线和圆的位置关系教学反思1
本节课教学我所面对的传授对象是聋哑学生,根据聋生的特点在学生观察教材123页三幅照片时,我立刻告诉学生你说的对,这就是直线和圆的三种关系:相交、相切和相离。我认为是数学课而不是语文课,数学课只注重学生的观察思维能力,不追求学生的语言表达能力和概括能力。
还有因为手语的手势再多再细也不可能表达出所有的抽象的甚至连丰富的语言都不好表述的东西,因此在讲解数学时,我追求细致,不要想很简单,很明显,而一带而过。因此,教学时我多次强化学生对直线与圆的三种关系的理解,为学生探究点到直线的距离d和圆半径r的大小关系。
然而数学教学时,该细的地方还是要细,这需要教师自己的把握,在学生轻而易举回答出来的问题时,有时要带领学生深入思考,并多问个为什么?比如在本课学生总结出:“圆的切线垂直于过切点的直径”时。养成学生深入思考的好习惯,不要想当然!
直线和圆的位置关系教学反思2
今天,我顺利地上完《直线和圆的位置关系》第一课时。
本节课,我先让学生在课前自行完成教学案中“课前预习与导学”这一部分,情况良好。上课后先信息反馈进行评讲,然后引导学生回忆了点与圆的位置关系及如何用数量关系来判断点与圆的位置关系。接着以《海上日出》图创设情景,从而引出课题:直线和圆的位置关系。然后由学生*移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由小“练习”进行应用,最后通过“例题”“课堂检测”去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:
1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在小练习之后我及时地进行总结归纳方法,让学生在以后解决实际问题过程中能一下子找到切入点,培养学生解决实际问题的能力。
同时,我也感觉到本节课的教学有不妥之处,主要有以下三点:
1、学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、对于我们学生的情况,初三的教学始终没有摆脱灌输式教学,尽管课上也让学生自主操作、思考,但老师讲的太多,没有给予学生足够的探索、交流的时间,势必会影响到部分学生的思维,限制了学生的发展。所以,我们也要学会该“放手时就放手”,大胆地让学生去思考,也许会有意外的收获。
3、对教材的把握,对学生的实情,在备课时都要考虑。在选题时不仅要照顾到基础薄弱的同学,也要照顾到基础好些的同学,适时选做。对于有些题可以适当地进行变式训练,拓展灵活运用,活跃学生的思维。
总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。
直线和圆的位置关系教学反思3
本节内容是直线与圆的位置关系的第二节课。需要一个课时。
(1)在教学中,组织学生自主观察、猜想、
证明
并深刻剖析直线是圆的切线的判定条件和直线与圆相切的性质;对重要的结论及时
总结
(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。
今 后再教学本节课,应删去未能落实的教学设计,如繁杂的证明,多重视展示后进生的思维活动,有效地帮助他们形成良好的思维品质。另外,应加强对学生新建的知 识结构进行有效的跟踪、检测、调查与反馈,加强与学生交流,帮助他们扎实构建完整的知识体系,帮助他们养成观察、猜想、分析、探索、语言表达等思维习惯, 使学生在获得知识的同时,进一步培养相关的思维能力和素质.
新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”, 让学生真正“动起来”,动不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,更要落实,动静结合,收放适 度,动得有序,动而不乱。课堂教学要的不是热闹场面,而是对问题的深入研究和思考。首先要设计好问题,针对不同意见和问题引导学生展开讨论、辩论,抓住学 生发言中的问题,及时给以矫正。当教师提出问题让学生探索时,学生自己寻找答案时,要放手让学生活动,但要避免学生兴奋过度或活动过量。今后再教学本节课 仍应倡导提高学生的问题意识,以对问题的探究来构筑本节课教学的主题。但是,教师待学生的问题提完后,与学生一道对问题进行归类,找出学生思维和知识的核 心问题,以此组织课堂教学,并相机解决其他问题。仍应放权给学生,给他们想、做、说的机会,让他们讨论、质疑、交流,围绕某一个问题展开辩论。教师应当给 学生时间和权利,让学生充分进行思考,给学生充分表达自己思维的机会。但是,应关注学生的参与程度,有的学生的参与只是一种表面上的行为参与。要看学生的 思维是否活跃,关键是学生所回答的问题、提出的问题,是否建立在一定的思维层次上,是否会引起其他学生的积极思考,还是学生的自我需要。也就是说我们要关 注学生思维的状态与学习互动的状态。
直线和圆的位置关系教学反思4
这节课,我由生活中的情景——日落引入,让学生发现地*线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生*移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:
1、由日落引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到数学无处不在,无时不有。
2、在探索直线和圆位置关系所对应的数量关系时,让学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
直线和圆的位置关系教学反思5
本节课的教学我采用先亮标,亮自学提示及检测题的形式让学生先自学。依据自学检测题检验学生自学结果。然后精讲了切线性质定理及分析两种证明方法。然后结合小黑板练习巩固提高这节知识。
讲课时我改变了原来讲后再练的方式,采用了讲评一个知识点后配基础练习题,巩固此知识点的方法。避免讲后再练,练习与知识的脱节,练习紧跟。精讲知识后,再配以比基础题(巩固基础知识点)层次高的两组练习,让学生先做,采用举手的方式调查学生自己运用知识解决问题的情况。讲前85%的同学都举手做完,还有个别同学做到运用灵活方法解决问题。中午三道作业学生掌握良好。其余学生在我的讲解下也掌握今天的内容,会运用两种方法判断直线和圆的位置关系。知道有切线可连圆心和切点得垂直关系这种基本辅助线。
本节课的教学总的来说很顺利,学生掌握良好,由于课程标准对于本节课要求不高,紧扣标准,走进中招。本节课若能再配合课后检测题,及时精确把握,学生掌握情况会更完美。
重建:讲课前,先亮标,亮自学提示及检测题,以问题形式精讲切线性质定理及证明。配合练习、提高练习,下课前5分钟配简单检测题以便更全面把握学生掌握的情况。
教师的行为直接影响着学生的学习方式,要让学生真正成为学习的主人,积极参与课堂学习活动,因此在教学中让学生想象、观察、动手实践、发现内在的联系并利用类比归纳的方法,探索规律,指导学生合作、研究并尝试用学到的知识解决实际问题。
直线和圆的位置关系教学反思6
《直线与圆的位置关系》是人教版九年级(下)第三章第一节的内容,它和点与圆的位置关系、圆与圆的位置关系同是研究图形之间位置关系的重要内容。下面谈谈自己的做法和体会:
一、重视定义的形成和概括过程:
“直线与圆的位置关系”是由公共点的个数来定义的。定义的教学是在教师引导下,通过学生观察、思考、交流、概括等探究活动亲身经历概念的形成过程,形成新知识的建构。首先引导学生回忆点和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识。接着,借助多媒体引导学生观察并思考:在不同的位置关系下,直线和圆的公共点的个数有什么不同?从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征。到此,我并没有急于给出定义,而是进一步引导学生在定义的形成上下工夫,又提出两个问题:一是直线与圆有三个或三个以上公共点吗?二是通过刚才的研究,你认为直线和圆的位置关系可分为几种类型呢?分类的标准是什么?定义的教学不只是以直接感知教材为出发点,而是力图还原定义的形成过程,这样既加深了学生对定义本身的理解,又提高学生对定义形成过程中所涉及的思想、方法的认识。而多媒体课件在这里的作用主要是通过“直线动圆不动”“圆动直线不动”“圆心直线不动半径变”三种运动方式的演示,有效创设符合教学内容的情景,把知识的形成过程直观化,提高学生的兴趣,增强学生的参与性。
二、重视定理的发现和总结过程:
本课内容的第二个知识点是运用圆心到直线的距离与半径的大小关系来判定直线与圆的位置关系,并反过来得到直线与圆的位置关系下所具有的数量特征。难点是如何引导学生去发现隐含在图形中的这两个数量并加以比较,为此,我设计了一个问题串,以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,闪现了学生思维创新的火花。
引导1:通过刚才的研究我们知道,利用公共点的个数可以判定直线与圆的位置关系,请同学想一想,能否像判定点与圆的位置关系那样,通过数量关系来判定直线与圆的位置关系?
引导2:点与圆的位置关系的判定运用了哪两个数量之间的关系?直线与圆的位置关系中可以出现哪两个量呢?
引导3:如何用图形来反映半径和圆心到直线的距离这两个量呢?
引导4:如何由数量关系并结合图形判定相应的位置关系呢?
引导5:运用数量关系判定直线与圆的位置关系以及点与圆的位置关系,这两者之间有何区别与联系?
引导6:以上三个判定反过来成立吗?
通过以上问题,学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,这无疑促进学生在学会数学的过程中顺利地向“会学”的方向发展。而多媒体课件在这里的作用在于把“形”和“数” 的关系及其变化动态呈现在屏幕上,成为学生探索验证的好帮手。
三、尊重学生的主体地位:
教学设计应为学生自主学习,实现知识的建构服务。这节课为学生提供了大量问题情境、活动方式,使学生通过“做一做”“想一想”“练一练”“议一议”充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。而多媒体的介入,为学生实现“意义建构”创设了更为逼真的“情景”,改善了认知环境,有利于提高课堂效率,有利于学生思维和技能的训练。如“议一议”:(1)已知⊙O半径为4cm,直线l上的点A满足OA=4cm,能否判定直线l和⊙O相切?为什么?
(2)已知⊙O半径为4cm,直线l上的点A满足OA=5cm,能否判定直线l和⊙O相离?为什么?
此题重在强调判定方法中圆心到直线的距离,利用多媒体演示,更直观地说明:(1)中当OA不是圆心到直线的距离时,直线l和⊙O相交;当OA是圆心到直线距离时,直线l是⊙O相切。(2)方法同(1),通过此题练习提高了学生思维的深刻性和批判性。
四、重视规律的揭示和提炼过程:
某个数学知识的教学可以在短期内完成,数学技能也可通过强化训练形成,而掌握学习的规律是一个长期渐进的过程,我认为教师在教学过程中应增强揭示规律的意识,引导学生从学习、研究的过程加以提炼,通过日积月累产生认识的飞跃。因此,在回顾与反思中,我组织学生以小组交流的形式讨论以下问题:一是通过刚才的学习,你对如何研究图形之间的位置关系有什么收获和体会?二是“点与圆的位置关系”与“直线与圆的位置关系” 有哪些联系?通过比较你有何启发?这一设计的做法虽小,作用却大,它使学生的认识上升到一个新的高度。也确保了学生在学会数学的过程中顺利地向“会学”的方向发展。
五、拓宽学习的时间和空间:
课后作业的设计不仅要达到巩固知识的目的,更重要的是有研究性和探索性。本节的课后作业有一道探究价值的题目:在Rt△ABC 中,∠C=Rt∠,AC=8cm,BC=6cm,若要以C为圆心,R为半径画圆,请根据下列条件,求半径R的值或取值范围。 1、AB与圆相离 2、AB与圆相交 3、AB与圆相切。
学生需通过动手动脑来完成,使学生的`探索精神由课内延伸到课外。多媒体课件的作用在于通过圆的半径的动态变化,为学生研究直线与圆的位置关系提供思路和分类方法。
总之,通过这节课的教学,力图达到以下三个目标:一是知识目标,就是使学生理解概念,掌握性质和判定并能够利用它们分析问题和解决问题;二是能力目标,培养学生运用迁移、联想、类比、化归、数形结合等数学思想方法发现问题解决问题的能力和创新能力;三是情感目标,通过学生的主动参与,在学会数学的过程中向“会学”的方向发展,培养运动、变化、发展的辨证唯物主义观点。
直线和圆的位置关系教学反思7
"思之不慎,行而失当”,“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思意识人类早就有之。作为教师,在教学中也应适时反思教学过程的得与失。
在《直线和圆的位置关系》一课教学后,感受颇多,现分享如下:
开课时,借助微机展示“圆圆的落日慢慢从海*面升起”的动画,从而展现直线与圆的位置关系。由此引入课题——直线与圆的位置关系,学生比较感兴趣,充分感受生活中的数学知识,体验数学来源于生活。然后提出问题,引导学生大胆猜想,思考,发现三种位置关系,激发学生学习兴趣,营造探索问题的氛围。同时让学生从生活中“找”数学,“想”数学,体会到数学知识无处不在,应用数学无处不有。这也符合“数学教学应从生活经验出发”的新课程标准要求。
在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生用类比的方法来研究直线与圆的位置关系,在研究过程中,采用小组讨论的方法,给予学生足够的探索、交流的时间,培养学生互助、协作的精神,让学生在相互讨论中,集思广益,形成思维互补,从而使概念更清楚,结论更准确。 最后由学生小结这一知识点,我板书在黑板上,培养学生用数学语言归纳问题的能力,同时感受收获知识的快乐。
在新知教授完毕,知识升华这块,我安排了一道实际问题,一辆火车的噪首会不会影向处在与铁路相交的另一条公路旁的学校?如果会影响,影响的时间有多长?新课标下的数学强调人人学有价值的数学,人人学有用的数学,由于此题要学生回到生活中去运用数学知识解决生活中遇到的问题,学生的积极性高涨,都急着讨论解决方案,使乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
一堂课教学下来,也发现有诸多不妥之处,让我认识到自己需要继续努力。归纳主要有以下三点:
1、教师在课堂应当以引导者的身份出现,把课堂和讲台让位于学生,让“教师的教”真正服务于“学生的学”,而我在这一节课中因为一方面担心学生在自主研究知识的形成时会浪费时间,另一方面担心会产生意想不到的或者课前备课时没有考虑到的回答,总是把自己的思想强加给学生,比如学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生只是被动的接受,这样就会对概念的理解不是很深刻。这里可以改为让学生自己下定义,教师适当放手,以师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、有些课堂提问欠合理化、科学化,提问随意性大,缺乏针对性和启发性,导致课堂教学引导不力,问题缺乏精心安排这就使得课堂存在着不少“徒劳的提问”。让课堂时间分配的不太合理。今后应该把一些提问设计再提炼,能达到精而准。
3、在处理课后练习时,做的不够细致,这一环节是对前面探究新知识是否掌握的一个小测试,重在帮助学生掌握方法,而我在讲解练习时,只展示了解题思路,并没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。这里教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识,充分体现"授人以鱼不如授人以渔"。
总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。
直线和圆的位置关系教学反思8
新课程指出:学生是学习的主体,是发展的主体。在课堂教学中,教师要将课堂的主动权让给学生,作为教师应以“探究过程,探究方法,探究结果,运用结果”为主线安排教学进程,应高度重视学生的主动参与、亲自研究、动手操作,让学生从中去体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。
在《直线和圆的位置关系》这节课中,我首先由生活中的情景——日落引入,让学生发现地*线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生*移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。
通过本节课的教学,我认为成功之处有以下几点:
1.由日落的三张照片(太阳与地*线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。
2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识。
总之,新课程的课堂教学要让学生作为课堂教学的主体参与到课堂教学过程中来,充分展现自己的个性,施展自己的才华,使学生在参与和体验的过程中真正成为学习的主人,养成勇于探索、敢于实践的个性品质。与此同时,教师还要为学生的学习创造探究的环境,营造探究的氛围,促进探究的开展,把握探究的深度,评价探究的效果。
直线和圆的位置关系教学反思9
这节课,我由生活中的情景——日落引入,让学生发现地*线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生*移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:
1。由日落引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到数学无处不在,无时不有。
2。在探索直线和圆位置关系所对应的数量关系时,让学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3。新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
直线和圆的位置关系教学反思10
《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的*台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。
亮点一:由于本节课综合性强,涉及到的知识面广,对学生的能力水*要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。
亮点二:在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。
亮点三:板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。
亮点四:充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。
亮点五:教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。
亮点六:教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。
直线和圆的位置关系教学反思11
这是我第一次进入初三进行教学,即紧张又兴奋。经过一个学期的历练,在校领导和组内老教师的无私帮助下我有了一些进步。现以《直线和圆的位置关系》第一课时为例,反思如下。
在初三的教学过程中,我几乎是听一节上一节。而集体备课也给了我很大的帮助。通过集体备课和听课,在《直线和圆的位置关系》这节课中,我首先引导学生回忆了点与圆的位置关系及所对应的点到圆心的距离与圆半径的数量关系。从而引出课题:直线和圆的位置关系。然后由学生*移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:
1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了两道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”“公路边的学校会不会受到噪声的影响?”培养学生解决实际问题的能力。由于这两题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。
总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。
圆周角和圆心角的关系教学反思3篇(扩展10)
——角的分类和画角练习课的教学反思 (菁选3篇)
角的分类和画角练习课的教学反思1
每一板块的设计都很有层次性,突出每一板块的主体。做到分层练习,层层递进。大量的角与生活的联系,使学生对角有更深的印象:通过第3题可以让学生在折一折、看看的活动中,利用直观形象来说明这三类角的关系,巩固2个直角=1个*角,4个直角=2个*角=1个周角的认识;通过钟面分针的转动形成各种各样的角,着重让学生通过对角度数的了解,正确的进行判。第5小题是结合学生对五类角的认识及对它们度数范围的理解,系统的概括角的分类,进一步明确分类的依据。第6、7两题是让学生对一些特殊角度数的`了解,明确对于这类角可以用三角尺进行度量,通过对这两题的对比,发现除特殊角度外,其余角度更需要量角器进行度量,并且巩固练习量角器量角的方法。
用两副三角尺画角学生比较有兴趣,但在实际操作中学生画图不是特别较熟练,量角的度数不够精确,需要多练;或者画出来的角顶点不是尖的而是圆的。
通过不同类型题目的练习,学生能对角的相关知识有更多的.了解,尤其是对如何求一些角的度数有了自己的方法,但是还不够熟练。还有部分学生不能很好地将知识进行整合,让学生估一估自己所画的角是否正确。将内外圈不分,将钝(或锐)角画成了锐(或钝)角。
所以在教学中还要强调要求学生能够学生灵活运用知识,引导学生自主的探索,总结画角的检验方法。学生当分不清量角器的内外圈画出角后,要马上用学过的角的分类的知识回头检验自己的角画对没,使学生形成及时估计、检查的习惯。
角的分类和画角练习课的教学反思2
每一板块的设计都很有层次性,突出每一板块的主体。做到分层练习,层层递进。大量的角与生活的联系,使学生对角有更深的印象:通过第3题可以让学生在折一折、看看的活动中,利用直观形象来说明这三类角的关系,巩固2个直角=1个*角,4个直角=2个*角=1个周角的认识;通过钟面分针的转动形成各种各样的角,着重让学生通过对角度数的了解,正确的进行判。第5小题是结合学生对五类角的认识及对它们度数范围的理解,系统的概括角的分类,进一步明确分类的依据。第6、7两题是让学生对一些特殊角度数的了解,明确对于这类角可以用三角尺进行度量,通过对这两题的对比,发现除特殊角度外,其余角度更需要量角器进行度量,并且巩固练习量角器量角的方法。
用两副三角尺画角学生比较有兴趣,但在实际操作中学生画图不是特别较熟练,量角的度数不够精确,需要多练;或者画出来的角顶点不是尖的而是圆的。
通过不同类型题目的练习,学生能对角的相关知识有更多的.了解,尤其是对如何求一些角的度数有了自己的方法,但是还不够熟练。还有部分学生不能很好地将知识进行整合,让学生估一估自己所画的角是否正确。将内外圈不分,将钝(或锐)角画成了锐(或钝)角。
所以在教学中还要强调要求学生能够学生灵活运用知识,引导学生自主的探索,总结画角的检验方法。学生当分不清量角器的内外圈画出角后,要马上用学过的角的分类的知识回头检验自己的角画对没,使学生形成及时估计、检查的习惯。
角的分类和画角练习课的教学反思3
本节课我利用活动角引出各种大小不同的角,帮助学生发展对角的认识,加深对角的理解。学生在操作活动角的过程中,充分调动各种感官来进行各种角的特征的.学习,从而认识直角、锐角、钝角、*角、周角的大小,提高学习效率。根据度数,教会学生选择适宜的工具画图,会用三角尺画出一定度数的角,重点是掌握用量角器画角,能初步估计角的大小。
教学“角的分类”时,我让学生利用活动角,通过边操作边观察,感受角有大有小,理解锐角、钝角不是指某一度数的角,是指某一固定范围的角。并能根据角的大小对角进行分类。在操作中体会1周角=2*角=4直角。
教学“画角”时,先是根据上节课记住的三角板上的三个角来画90°、30°、60°和45°的角,比较简单,主要问题是部分学生的三角尺头上磨圆了,所以画出的角,顶点不够尖。针对这一情况,要求学生先画两条边,再把两条边延长,相交成一个点。接下来用量角器画角,先让学生尝试画60°的角,大部分学生根据量角的方法都能画出来,引导学生总结画角的`步骤:两重合(中心点与顶点重合,射线与0刻度线重合),找刻度,连线,画角这一环节也算是顺利的,但也有一部分学生容易把内、外刻度线混淆,导致画角错误。
教学“想想做做”第4题时,学生很容易就能准确判断每个钟面上时针和分针组成了什么角。但判断1时、2时、5时、10时,时针和分针所成的角的度数时,还有一定的难度。这时,我引导学生把12时看作是一个周角,而钟面上有12个大格,3时和9时正好是直角90°,学生马上想出可以计算每个大格的度数,用360°÷12=30°,所以根本就不需要量,只要数一下时针和分针之间是几大格就可以了,但是部分学生空间观念没有形成,一定要有实物,学生才能准确计算。
学生对这节课的知识掌握较好,但是概念较多,很容易遗忘或混淆,还需要多练习。
推荐访问:圆周角 圆心角 反思 圆周角和圆心角关系教学反思3篇 圆周角和圆心角的关系教学反思1 圆周角和圆心角的关系教学反思100字