当前位置:百纳范文网>专题范文 > 公文范文 > 初二上册数学知识点归纳3篇(精选文档)

初二上册数学知识点归纳3篇(精选文档)

时间:2022-12-28 12:40:03 来源:网友投稿

初二上册数学知识点归纳1  一、知识框架  二、知识概念  1.算术*方根:一般地,如果一个正数x的*方等于a,即x2=a,那么正数x叫做a的算术*方根,记作。0的算术*方根为0;从定义可知,只有当下面是小编为大家整理的初二上册数学知识点归纳3篇(精选文档),供大家参考。

初二上册数学知识点归纳3篇(精选文档)

初二上册数学知识点归纳1

  一、知识框架

  二、知识概念

  1.算术*方根:一般地,如果一个正数x的*方等于a,即x2=a,那么正数x叫做a的算术*方根,记作。0的算术*方根为0;从定义可知,只有当a≥0时,a才有算术*方根。

  2.*方根:一般地,如果一个数x的*方根等于a,即x2=a,那么数x就叫做a的*方根。

  3.正数有两个*方根(一正一负)它们互为相反数;0只有一个*方根,就是它本身;负数没有*方根。

  4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。

  5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

  实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

初二上册数学知识点归纳2

  *均数

  基本公式:①*均数=总数量÷总份数

  总数量=*均数×总份数

  总份数=总数量÷*均数

  ②*均数=基准数+每一个数与基准数差的和÷总份数

  基本算法:

  ①求出总数量以及总份数,利用基本公式①进行计算。

  ②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的*均数;最后求这个差的*均数和基准数的和,就是所求的*均数,具体关系见基本公式。

初二上册数学知识点归纳3

  多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

  多项式与多项式相乘时要注意以下几点:

  ①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

  ②多项式相乘的结果应注意合并同类项;

  ③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 。


初二上册数学知识点归纳3篇扩展阅读


初二上册数学知识点归纳3篇(扩展1)

——初二上册数学知识点复*结3篇

初二上册数学知识点复*结1

  1、三角形的边

  由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。

  顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。

  三角形两边的和大于第三边。

  2、三角形的高、中线和角*分线

  3、三角形的稳定性

  三角形具有稳定性。


初二上册数学知识点归纳3篇(扩展2)

——初二上册数学知识点总结3篇

初二上册数学知识点总结1

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法及其优缺点

  (1)关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图象法

  用图象表示函数关系的方法叫做图象法。

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标*面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用*滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成 (k,b为常数,k 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数 中的b=0时(即 )(k为常数,k 0),称y是x的正比例函数。

  2、一次函数的图像: 所有一次函数的图像都是一条直线

  3、一次函数、正比例函数图像的主要特征:

  一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是经过原点(0,0)的直线。

初二上册数学知识点总结2

  轴对称

  1.如果一个*面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

  2.性质

  (1)成轴对称的两个图形全等;

  (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直*分线。

  一次函数

  (一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

  (二)函数三要素

  1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

  2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

  3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。

  (三)一次函数的表示方法

  1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。

  2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

  3.图像法:用图象来表示函数关系的方法叫做图象法。

  (四)一次函数的性质

  1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。

  2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。

  3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。

  4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

  5.函数图象性质:当k相同,且b不相等,图像*行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。

  6.*移时:上加下减在末尾,左加右减在中间。

  直角三角形

  1.勾股定理及其逆定理

  定理:直角三角形的两条直角边的等于的*方。

  逆定理:如果三角形两边的*方和等于第三边的*方,那么这个三角形是直角三角形。

  2.含30°的直角三角形的边的性质

  定理:在直角三角形中,如果一个锐角等于30°,那么等于的一半。

  3.直角三角形斜边上的中线等于斜边的一半。

  要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的*方和等于斜边的*方”,应该说成“三角形两边的*方和等于第三边的*方”。

  ②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法。

  图形的*移与旋转

  1.*移,是指在同一*面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的*移运动,简称*移。

  2.*移性质

  (1)图形*移前后的形状和大小没有变化,只是位置发生变化。

  (2)图形*移后,对应点连成的线段*行(或在同一直线上)且相等。

  拓展阅读:初中数学提高解题速度的方法

  认真仔细审题

  对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

  有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

  做好归纳总结

  在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

  熟悉习题内容

  解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

  因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

  学会主动画图

  画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

  因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

  逐步增加难度

  人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

  我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

初二上册数学知识点总结3

  一、 在*面内,确定物体的位置一般需要两个数据。

  二、*面直角坐标系及有关概念

  1、*面直角坐标系

  在*面内,两条互相垂直且有公共原点的.数轴,组成*面直角坐标系。其中,水*的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的*面,叫做坐标*面。

  2、为了便于描述坐标*面内点的位置,把坐标*面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

  注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

  3、点的坐标的概念

  对于*面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

  点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有,分开,横、纵坐标的位置不能颠倒。*面内点的坐标是有序实数对,当 时,(a,b)和(b,a)是两个不同点的坐标。

  *面内点的与有序实数对是一一对应的。

  4、不同位置的点的坐标的特征

  (1)、各象限内点的坐标的特征

  点P(x,y)在第一象限:x0

  点P(x,y)在第二象限:x0

  点P(x,y)在第三象限:x0

  点P(x,y)在第四象限:x0

  (2)、坐标轴上的点的特征

  点P(x,y)在x轴上,y=0 ,x为任意实数

  点P(x,y)在y轴上,x=0 ,y为任意实数

  点P(x,y)既在x轴上,又在y轴上, x,y同时为零,即点P坐标为(0,0)即原点

  (3)、两条坐标轴夹角*分线上点的坐标的特征

  点P(x,y)在第一、三象限夹角*分线(直线y=x)上,x与y相等

  点P(x,y)在第二、四象限夹角*分线上,x与y互为相反数

  (4)、和坐标轴*行的直线上点的坐标的特征

  位于*行于x轴的直线上的各点的纵坐标相同。

  位于*行于y轴的直线上的各点的横坐标相同。

  (5)、关于x轴、y轴或原点对称的点的坐标的特征

  点P与点p关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)

  点P与点p关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)

  点P与点p关于原点对称 横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)

  (6)、点到坐标轴及原点的距离

  点P(x,y)到坐标轴及原点的距离:

  (1)点P(x,y)到x轴的距离等于|y|;

  (2)点P(x,y)到y轴的距离等于|x|;

  (3)点P(x,y)到原点的距离等于根号x*x+y*y

  三、坐标变化与图形变化的规律:

  坐标(x,y)的变化

  图形的变化

  x a或y a

  被横向或纵向拉长(压缩)为原来的a倍

  x a,y a

  放大(缩小)为原来的a倍

  x (-1)或y (-1)

  关于y轴或x轴对称

  x (-1),y (-1)

  关于原点成中心对称

  x +a或y+ a

  沿x轴或y轴*移a个单位

  x +a,y+ a

  沿x轴*移a个单位,再沿y轴*移a个单


初二上册数学知识点归纳3篇(扩展3)

——初二上册数学知识点复*结

初二上册数学知识点复*结1

  1、三角形的边

  由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。

  顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。

  三角形两边的和大于第三边。

  2、三角形的高、中线和角*分线

  3、三角形的稳定性

  三角形具有稳定性。


初二上册数学知识点归纳3篇(扩展4)

——初二上册物理知识点3篇

初二上册物理知识点1

  1、*面镜成像的特点:像是虚像,像和物关于镜面对称(像和物的大小相等,像和物对应点的连线和镜面垂直,到镜面的距离相等;像和物上下相同,左右相反(镜中人的左手是人的右手,看镜子中的钟的时间要看纸张的反面,物体远离、靠近镜面像的大小不变,但亦要随着远离、靠近镜面相同的距离,对人是2倍距离)。

  2、水中倒影的形成的原因:*静的水面就好像一个*面镜,它可以成像(水中月、镜中花);对实物的每一点来说,它在水中所成的像点都与物点“等距”,树木和房屋上各点与水面的距离不同,越接近水面的点,所成像亦距水面越近,无数个点组成的像在水面上看就是倒影了。(物离水面多高,像离水面就是多远,与水的深度无关)。

  3、*面镜成虚像的原因:物体射到*面镜上的光经*面镜反射后的反射光线没有会聚二是发散的,这些光线的反向延长线(画时用虚线)相交成的像,不能呈现在光屏上,只能通过人眼观察到,故称为虚像(不是由实际光线会聚而成)

初二上册物理知识点2

  1、光源:能够自行发光的物体叫光源

  2、光在均匀介质中是沿直线传播的。大气层是不均匀的,当光从大气层外射到地面时光线发生了弯折(海市蜃楼、早晨看到太阳时,太阳还在地*线以下、星星的闪烁等)光直线传播的应用可解释许多光学现象:激光准直,影子的形成,月食、日食的形成、小孔成像等

  3、光线:表示光传播方向的直线,即沿光的传播路线画一直线,并在直线上画上箭头表示光的传播方向(光线是假想的,实际并不存在)

  4、光速。光在不同物质中传播的速度一般不同,真空中最快。光在真空中的传播速度:V=3×108m/s,在空气中的速度接近于这个速度,水中的速度为3/4V,玻璃中为2/3V。

  5、光的反射:光从一种介质射向另一种介质的交界面时,一部分光返回原来介质中,使光的传播方向发生了改变,这种现象称为光的反射

  6、光的反射定律:反射光线与入射光线、法线在同一*面上;反射光线和入射光线分居在法线的两侧;反射角等于入射角。可归纳为:"三线共面,两线分居,两角相等"理解。由入射光线决定反射光线,叙述时要"反"字当头。发生反射的条件:两种介质的交界处;发生处:入射点;结果:返回原介质中反射角随入射角的增大而增大,减小而减小,当入射角为零时,反射角也变为零度。

  7、两种反射现象:

  镜面反射:*行光线经界面反射后沿某一方向*行射出,只能在某一方向接收到反射光线(反射面是光滑*面)。

  漫反射:*行光经界面反射后向各个不同的方向反射出去,即在各个不同的方向都能接收到反射光线(反射面是粗糙*面或曲面)

  注意:无论是镜面反射,还是漫反射都遵循光的反射定律。

  8、在光的反射中光路可逆

  9、*面镜对光的作用(1)成像(2)改变光的传播方向

  10、*面镜成像的特点(1)成的是正立等大的虚像(2)像和物的连线与镜面垂直,像和物到镜的距离相等。理解:*面镜所成的像与物是以镜面为轴的对称图形,即*面镜是物像连线的中垂线。

  11、实像与虚像的区别:实像是实际光线会聚而成的,可以用屏接到,也能用眼看到。

  虚像不是由实际光线会聚成的,而是实际光线反向延长线相交而成的,只能用眼看到,不能用屏接收。

  12、*面镜的应用:(1)水中的倒影(2)*面镜成像(3)潜望镜

初二上册物理知识点3

  一、光的传播

  1、自身能够发光的物体叫光源,如太阳、萤火虫等,而月亮不是光源。

  2、光在同种均匀的介质中沿直线传播,生活中应用光的直线传播的事例有:日食、月食,小孔成像,排队瞄准等。

  3、光在真空中传播速度是最快的,真空中的光速c=3.0×108m/s,光在不同的介质中传播速度是不同的

  二、光的颜色

  1、色散:太阳光通过三棱镜后被分解成红、橙、黄、绿、蓝、靛、紫七种色光的现象,这说明白光不是单色光。

  2、色光的三基色:红、绿、蓝;不透明物体的颜色是由它发射的光决定的,透明物体的颜色是由它透过的光决定的。颜料三原色是:品红、黄、青。

  三、光的反射

  1、光的反射定律:反射光线与入射光线、法线在同一*面上,反射光线与入射光线分居法线的两侧;反射角等于入射角。

  2、在光的反射现象中光路是可逆的

  3、光在物体表面的反射有两类:一类是镜面反射,反射面是光滑的,如黑板“反光”;另一类是漫反射,反射面是粗造的,如我们能从不同的方向看到本身不发光的物体。镜面反射和漫反射都遵守光的反射定律

  4、*面镜成像规律:物体在*面镜中成的虚像、像与物的大小相等,像与物的连线跟镜面垂直、像与物到镜面的距离相等

  5、球面镜包括凸面镜,如:汽车的后视镜,公路拐弯处的反光镜,主要作用是扩大视野;还有凹面镜,如:太阳灶、手电筒的反光罩,作用是使光汇聚起来

  四、光的折射

  1、光的折射:光从一种介质进入另一种介质,它的传播方向发生改变的现象。

  2、光从空气斜射入水或玻璃等其它介质时,折射光线向法线方向骗折,折射角小于入射角。入射角增大,折射角也增大。

  光从水或玻璃斜射入空气时,折射光线将远离法线,折射角大于入射角。当光空气垂直射入水或玻璃等其它介质表面时,传播方向不变,折射角等于入射角等于0°

  3、光的折射现象中,光路是可逆的。

  五、看不见的光

  光谱上红光以外的部分叫红外线,它用于红外夜视仪,红外线测温仪;光谱上紫光以外的部分叫紫外线,紫外线验钞机。

  六、透镜与凸透镜成像

  1、中间厚边缘薄的透镜凸透镜,它对光线有会聚作用

  2、中间薄边缘厚的透镜凹透镜,它对光线有发散作用

  3、凸透镜的焦点:跟主光轴*行的光,通过透镜后会聚于一点,这一点叫凸透镜的焦点,用字母“F”表示

  4、凸透镜成像的规律和应用

  (1)焦距:用字母f表示,是指焦点到光心的距离;物距:用字母u表示,是指物体到透镜的距离;像距:是指像到透镜的距离,用字母v表示

  (2)凸透镜成像规律和应用列表

  物距u像距v像的性质应用

  u>2ff

  u=2fu=2f倒立等大的实像

  ①照相机利用物距大于2倍焦距,成倒立缩小的实像的原理制成的

  ②投影仪利用物距大于1倍焦距小于2倍焦距,成倒立放大的实像的原理制成的

  ③放大镜利用物距小于1倍焦距,成正立放大的虚像的原理制成的

  七、眼睛与透镜

  1、眼睛的作用相当于凸透镜,眼球好像一架照相机,来自物体的光会聚在视网膜上形成倒立、缩小的实像。

  2、产生近视眼的原因是晶状体太厚,眼的屈光本领过强,或眼轴偏长,来自物体的光成在视网膜的前面。近视眼需要配戴凹透镜来矫正

  3、产生远视眼的原因是晶状体太薄,眼的屈光本领过弱,或眼轴偏短,来自物体的光成在视网膜后面。近视眼需要配戴凸透镜来矫正


初二上册数学知识点归纳3篇(扩展5)

——高二会考数学知识点归纳3篇

高二会考数学知识点归纳1

  等差数列

  对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

  那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:

  将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。

  此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

  值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

  等比数列

  对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。

  那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:

  a2=a1_,

  a3=a2_,

  a4=a3_,

  ````````

  an=an-1_,

  将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。

  此外,当q=1时该数列的前n项和Tn=a1_

  当q≠1时该数列前n项的和Tn=a1_1-q^(n))/(1-q).

  高二会考数学知识点3

  (1)总体和样本

  ①在统计学中,把研究对象的全体叫做总体.

  ②把每个研究对象叫做个体.

  ③把总体中个体的总数叫做总体容量.

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,研究,我们称它为样本.其中个体的个数称为样本容量.

  (2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随

  机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  (3)简单随机抽样常用的方法:

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  (4)抽签法:

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查

高二会考数学知识点归纳2

  1、导数的定义:在点处的导数记作.

  2.导数的几何物理意义:曲线在点处切线的斜率

  ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

  3.常见函数的导数公式:

  4.导数的四则运算法则:

  5.导数的应用:

  (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

  注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

  (2)求极值的步骤:

  ①求导数;

  ②求方程的根;

  ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

  (3)求可导函数值与最小值的步骤:

  ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高二会考数学知识点归纳3

  一、直线与圆:

  1、直线的倾斜角的范围是

  在*面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或*行时,规定倾斜角为0;

  2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

  过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

  3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,

  ⑵斜截式:直线在轴上的截距为和斜率,则直线方程为

  4、直线与直线的位置关系:

  (1)*行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0

  5、点到直线的距离公式;

  两条*行线与的距离是

  6、圆的标准方程:.⑵圆的一般方程:

  注意能将标准方程化为一般方程

  7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

  8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交

  9、解决直线与圆的关系问题时,要充分发挥圆的*面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长


初二上册数学知识点归纳3篇(扩展6)

——初二上册政治知识点归纳3篇

初二上册政治知识点归纳1

  一.我知我家

  1.家庭关系的建立

  (1)家庭的含义

  家庭是由婚姻关系、血缘关系或收养关系而结合成的亲属生活组织。

  (2)家庭关系确立的几种情形

  依照法定条件和法定程序结婚,组成新的家庭;因生育导致的血缘关系结合成家庭;依照法定条件和法定程序收养而组成家庭;随父(母)再婚组成新的家庭;非婚生子女不一定与生身父(母)同住一起,但父(母)与子女间的法定权利义务仍然存在,非婚生子女的合法权益受法律保护。

  (3)家庭结构的类型

  现在常见的几种家庭类型,即核心家庭、主干家庭、单亲家庭、联合家庭。

  2.与父母的关系不可选择

  (1)与父母的血缘关系不可改变

  父母子女关系的确立,绝大多数基于血缘关系。生命是父母给予的,这种关系无可选择、无法改变。

  (2)与父母的感情是天然生成的最自然的一种亲情

  (3)要了解自己的父母、了解家人的好品质,了解好的家风

  填写家庭树,看看自己家庭结构的类型;讲讲好的家风、好的传统、家庭里出名的人。

  二.我我家

  1.大人讲我小时侯

  (1)家庭是我们成长的摇篮

  (2)父母是我们的第一任老师

  (3)我们尽享家庭的亲情和温暖

  2.无悔的奉献

  (1)父母对家庭的贡献——夸夸自己的父母

  (2)父母对子女之爱——概述母爱和父爱

  母爱是最无私的;父爱如山,深沉严格。

  (3)父母对子女的义务——父母养育子女是法律规定的必须履行的义务。

  3.感受家庭温暖

  (1)从各个方面感受家庭带给我们的温暖

  家是人们的情感栖息地、物质生活后盾、安全健康保障、娱乐天地、天然学校和今后发展的大本营。

  (2)热爱自己的家——用自第一文库网己感触最深的话,表达对父母的敬爱之情。

初二上册政治知识点归纳2

  一、 我爱你,*

  1、 *可爱之处表现在:(1)我们的祖国幅员辽阔,江山如画。(2)我们的祖国历史悠久。(3)中华民族创造了灿烂的文化。A:文字典籍。B:艺术创造。C:科技发明。D:民族团结。

  2、 热爱祖国的要求:(1)要热爱祖国的大好河山,积极维护祖国的*独立和领土完整。(2)要热爱祖国的历史文化,提高民族自尊心和自信心,为创造更加光辉灿烂的民族文化而尽心竭力。

  3、 民族团结的表现:(1)我国是一个统一的多民族国家。(2)历史上,我国各民族之间多方面的相互交往,丰富了中华文化,开拓了祖国疆域,推动了社会发展。(3)在社会主义现代化建设的今天,各民族更是相互团结、相互支持。形成了*等、团结、互助、和谐的民族关系。

  4、 如何维护民族团结:(1)热爱祖国的民族大家庭。(2)维护民族团结,反对民族分裂,多做有利于民族团结的事。(3)在学校生活中,各民族同学之间要互相关心,互相帮助,尊重各民族的风俗习惯、语言文字、宗教信仰,以实际行动自觉履行维护民族团结的光荣义务。

  二、 我们都是龙的传人

  1、 炎黄子孙一脉相承:(1)实现祖国统一,民族团结,中华腾飞,是包括台湾同胞在内的全国人民的共同心愿,也是海外华侨华人的共同心声。(2)台湾自古以来就是*不可分割的一部分。实现祖国的完全统一,是全体*人民不可动摇的坚强意志,是不可抗拒的历史潮流。(3)海外赤子都在以不同的方式支持和关注祖国的建设和发展。

  2、 为什么要热爱祖国:

  (1)热爱祖国是中华民族的光荣传统和崇高品德。(2)民族核心是爱国主义。

  (3)祖国的"存在和发展是个人生存和发展的前提。

  (4)自觉承担起建设祖国、振兴中华的历史责任,是我们每个人对祖国应尽的义务。

  (5)推进改革开放,加快现代化建设,更需要我们不断弘扬爱国主义的优良传统。

  3、 民族精神的内涵:中华民族形成了以爱国主义为核心的团结统一、爱好和*、勤劳勇敢、自强不息的伟大民族精神。

  4、 我们应怎样爱自己的祖国:

  (1)正确认识祖国的历史和现实,增强热爱祖国的情感和振兴祖国的责任感,树立民族自尊心和自信心。

  (2)要弘扬伟大的中华民族精神,高举爱国主义旗帜,把爱国之志变成报国之行。

  (3)要热爱祖国的大好河山,积极维护祖国的*独立和领土完整。

  (4)要热爱祖国的历史文化,提高民族自尊心和自信心,为创造更加光辉灿烂的民族文化而尽心竭力。(5)自觉履行维护民族团结,国家统一的法定义务。

  5、 民族精神的重要性:(1)一个民族没有振奋的精神和高尚的品格,是不可能自立于世界民族之林的。(2)这种民族精神成为中华民族世世代代生生不息的力量源泉,也成为中华民族悠久历史文化的灵魂与传统。


初二上册数学知识点归纳3篇(扩展7)

——初二数学知识点总结3篇

初二数学知识点总结1

  实数

  无理数:无限不循环小数叫无理数

  *方根:①如果一个正数X的*方等于A,那么这个正数X就叫做A的算术*方根。②如果一个数X的*方等于A,那么这个数X就叫做A的*方根。③一个正数有2个*方根/0的*方根为0/负数没有*方根。④求一个数A的*方根运算,叫做开*方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  相信通过上面的学习,同学们对实数知识点可以很好的掌握了,希望同学们在考试中取得好成绩。

  初中数学知识点总结:*面直角坐标系

  下面是对*面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  *面直角坐标系

  在*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。

  水*的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为*面直角坐标系的原点。

  *面直角坐标系的要素:①在同一*面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对*面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:*面直角坐标系的构成

  对于*面直角坐标系的构成内容,下面我们一起来学习哦。

  *面直角坐标系的构成

  在同一个*面上互相垂直且有公共原点的两条数轴构成*面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水*位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水*的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对*面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了*面直角坐标系后,对于坐标系*面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标*面内确定它所表示的一个点。

  对于*面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义

  把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  ④因式分解与整式乘法的关系:m(a+b+c)

  公因式:

  一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法

  ①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

初二数学知识点总结2

  一.定义

  1.一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x叫做a的算术*方根.a叫做被开方数.

  2.一般地,如果一个数的*方等于a,那么这个数叫做a的*方根或二次方根,求一个数a的*方根的运算,叫做开*方.

  3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.

  4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

  5.无限不循环小数又叫无理数.

  6.有理数和无理数统称实数.

  7.数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的。

  二.重点

  1.*方与开*方互为逆运算.

  2.正数的*方根有两个,它们互为相反数,其中正的*方根就是这个数的算术*方根.

  3.当被开方数的小数点向右每移动两位,它的算术*方根的小数点就向右移动一位.

  4.当被*方数小数点每向右移动三位,它的立方根小数点向右移动一位.

  5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.

  三.注意

  1.被开方数一定是非负数.

  2.0,1的算术*方根是它本身;0的*方根是0,负数没有*方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.

  3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

  以上就是数学网为大家提供的初二数学知识点总结:实数希望能对考生产生帮助,更多资料请咨询数学网中考频道。

初二数学知识点总结3

  第一章 一次函数

  1 函数的定义,函数的定义域、值域、表达式,函数的图像

  2 一次函数和正比例函数,包括他们的表达式、增减性、图像

  3 从函数的观点看方程、方程组和不等式

  第二章 数据的描述

  1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点

  条形图特点:

  (1)能够显示出每组中的具体数据;

  (2)易于比较数据间的差别

  扇形图的特点:

  (1)用扇形的面积来表示部分在总体中所占的百分比;

  (2)易于显示每组数据相对与总数的大小

  折线图的特点;

  易于显示数据的变化趋势

  直方图的特点:

  (1)能够显示各组频数分布的情况;

  (2)易于显示各组之间频数的差别

  2 会用各种统计图表示出一些实际的问题

  第三章 全等三角形

  1 全等三角形的性质:

  全等三角形的对应边、对应角相等

  2 全等三角形的判定

  边边边、边角边、角边角、角角边、直角三角形的HL定理

  3 角*分线的性质

  角*分线上的点到角的两边的距离相等;

  到角的两边距离相等的点在角的*分线上.

  第四章 轴对称

  1 轴对称图形和关于直线对称的.两个图形

  2 轴对称的性质

  轴对称图形的对称轴是任何一对对应点所连线段的垂直*分线;

  如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直*分线;

  线段垂直*分线上的点到线段两个端点的距离相等;

  到线段两个端点距离相等的点在这条线段的垂直*分线上

  3 用坐标表示轴对称

  点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).

  4 等腰三角形

  等腰三角形的两个底角相等;(等边对等角)

  等腰三角形的顶角*分线、底边上的中线、底边上的高线互相重合;(三线合一)

  一个三角形的两个相等的角所对的边也相等.(等角对等边)

  5 等边三角形的性质和判定

  等边三角形的三个内角都相等,都等于60度;

  三个角都相等的三角形是等边三角形;

  有一个角是60度的等腰三角形是等边三角形;

  推论:

  直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.

  在三角形中,大角对大边,大边对大角.

  第五章 整式

  1 整式定义、同类项及其合并

  2 整式的加减

  3 整式的乘法

  (1)同底数幂的乘法:

  (2)幂的乘方

  (3)积的乘方

  (4)整式的乘法

  4 乘法公式

  (1)*方差公式

  (2)完全*方公式

  5 整式的除法

  (1)同底数幂的除法

  (2)整式的除法

  6 因式分解

  (1)提共因式法

  (2)公式法

  (3)十字相乘法

推荐访问:知识点 上册 归纳 初二上册数学知识点归纳3篇 初二上册数学知识点归纳1 初二上册数学知识点归纳总结

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

Copyright©2012-2024 百纳范文网版权所有 备案号:鲁ICP备12014506号-1