当前位置:百纳范文网>专题范文 > 公文范文 > 初三数学一模学情质量分析14篇

初三数学一模学情质量分析14篇

时间:2022-06-20 08:40:02 来源:网友投稿

初三数学一模学情质量分析14篇

初三数学一模学情质量分析篇1

  一、锐角三角函数

  1.正弦:在rt△abc中,锐角∠a的对边a与斜边的比叫做∠a的正弦,记作sina,即sina=∠a的对边/斜边=a/c;

  2.余弦:在rt△abc中,锐角∠a的邻边b与斜边的比叫做∠a的余弦,记作cosa,即cosa=∠a的邻边/斜边=b/c;

  3.正切:在rt△abc中,锐角∠a的对边与邻边的比叫做∠a的正切,记作tana,即tana=∠a的对边/∠a的邻边=a/b。

  ①tana是一个完整的符号,它表示∠a的正切,记号里习惯省去角的符号“∠”;

  ②tana没有单位,它表示一个比值,即直角三角形中∠a的对边与邻边的比;

  ③tana不表示“tan”乘以“a”;

  ④tana的值越大,梯子越陡,∠a越大;∠a越大,梯子越陡,tana的值越大。

  4、余切:定义:在rt△abc中,锐角∠a的邻边与对边的比叫做∠a的余切,记作cota,即cota=∠a的邻边/∠a的对边=b/a;

  5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。(通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:

  若∠a为锐角,则①sina=cos(90°∠a)等等。

  6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。

  7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。0≤sinα≤1,0≤cosα≤1。

  同角的三角函数间的关系:

  tanα·cotα=1;

  tanα=sinα/cosα;

  cotα=cosα/sinα,sin2α+cos2α=1;

  二、解直角三角形

  1.解直角三角形:在直角三角形中,由已知元素求未知元素的过程。

  2.在解直角三角形的过程中用到的关系:(在△abc中,∠c为直角,∠a、∠b、∠c所对的边分别为a、b、c,)

  (1)三边之间的关系:a2+b2=c2;(勾股定理)

  (2)两锐角的关系:∠a+∠b=90°;

  (3)边与角之间的关系:

  sina=a/c;

  cosa=b/c;

  tana=a/b。

  sina=cosb

  cosa=sinb

  sina=cos(90°-a)

  sin2α+cos2α=1

初三数学一模学情质量分析篇2

  一个人的价值,应该看他贡献什么,而不应当看他取得什么。下面是课件网小编为您推荐人教版初三数学期末下册要点四篇。

初三数学一模学情质量分析篇3

  知识有如人体血液一样的宝贵。人缺少了血液,身体就要衰弱,人缺少了知识,头脑就要枯竭。下面是课件网小编为您推荐初三数学教案设计:《一元二次方程解法》。

  一. 说教材

  1.教材的地位与作用

  《一元二次方程的解法》是人教版九年级上册第二十一章第二节的内容。从本章来看,前几节课已经学习了一元二次方程的概念及四种解法,后面即将学习一元二次方程的应用,本节课具有承上启下的作用;从本册书来看,一元二次方程是后面学习二次函数、圆中的有关计算的基础;从整个初中阶段学生数学学习的内容来看,一元二次方程是初中数学“数与代数”的的重要内容之一,在初中数学中占有重要地位,通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它多元方程、高次方程、一元二次不等式、二次函数等知识的基础;从学科领域来看,学习一元二次方程对其它学科也有重要意义,如物理学中电学的一些计算、化学中根据化学方程式的计算等,都要用到一元二次方程的知识。本节课是一元二次方程的解法的练习课,旨在通过对一元二次方程四种解法的类比归纳,让学生会选择适当的方法解一元二次方程,并在学习中体会一些常用的数学思想。

  2.教学目标

  (1)熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程。

  (2)通过对一元二次方程的四种解法进行类比,理解解一远二次方程的基本思想是“降次”,体验分类讨论、转化归纳等数学思想。

  (3)通过学生间合作交流、探索,进一步激发学生的学习热情,求知欲望,同时提高小组合作意识和一丝不苟的精神。

  3.教学重难点

  重点:用适当的方法解一元二次方程。

  难点:对解一远二次方程的基本思想是“降次”的理解。

  二. 说教法学法

  常言道:知己知彼,百战不殆。我们教学就相当于和学生作战,只有了解学生的学习情况,才能够针对学生的具体水平而选择的方法将知识传授给学生,所以要先分析学情,再确定教法。

  1.学情分析

  在学习本节课之前,学生已经学习了一元二次方程的概念及四种解法,在七、八年级的时候也学习了一元一次方程、二元一次方程组、分式方程的解法,掌握了一些解方程的基本能力。再者,九年级学生的数学思维已有一定程度的发展,具有一定分析推理能力,同时,在讨论、探索、交流学习等方面有较为丰富的知识和经验,因此,应更多地应用探讨、合作交流等方法让学生去求得新知识,加深和扩展学生对一些数学思想的理解。

  2.教法学法

  本节课的主要任务是熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程,所以,我采用的方法可以概括性为四个字:精讲多练。讲,就是讲四种解法的优缺点及“降次”的思想;练,就是通过大量的解一元二次方程的练习题,让学生体会选择适当的方法的重要性及所有的一元二次方程都是通过“降次”转化为一元一次方程而求解,体验化归的数学思想。

  所以,本节课主要采用引探式教学方法,在活动中教师着眼于“引”尽力激发学生求知的欲望,引导他们解决问题并掌握解决问题的规律和方法,学生着眼于“探”,通过探索活动发现规律,解决问题,发展探索能力和创造能力。同时,采用电脑多媒体课件辅助教学,利用投影仪出示练习题,节约了课堂时间,保证学生能有充足的时间进行练习、交流,还可以展示学生的练习结果,纠正学生存在的共性问题。

  三. 说教学过程

  1. 回顾旧知:学生回顾一元二次方程的概念及四种解法(直接开平方法、配方法、公式法、因式分解法)

  2. 探究新知:出示四道有代表性的一元二次方程,要求学生自己选择方法解方程。学生完成任务后,以小组为单位交流或者跨小组交流,看看彼此用的是不是同一种方法,若方法不同,比较看谁的方法更简单。教师深入各小组了解学生的解题情况,并选出几个有代表性的学生的解题过程在投影仪上展示。

  3. 归纳小结:教师以四名学生的解法为例,引导学生体会不同的一元二次方程可以选择不同的方法来解,选择的基本原则就是简单易行。对于形如完全平方等于非负数的形式的一元二次方程,采用直接开平方法来解;对于方程的左边能用提公因式或乘法公式分解因式分解的一元二次方程,则采用因式分解法求解;其余的方程,则选择公式法或配方法。通过比较发现,无论选择哪一种方法解一元二次方程,基本的思想都是“降次”。直接开平方法和公式法是通过开平方达到降次的目的,配方法是通过配方再开平方达到降次的目的,因式分解法是通过把方程分解成两个一次因式的积等于0的形式而达到降次的目的,可谓是殊途同归。同时可以看出,这几种方法都是将“二次”降为“一次”,然后将一个一元二次方程化成了两个一元一次方程,然后用七年级学过的一元一次方程的解法来解决问题,这体现了一种转化的数学思想。可以给学生强调:我们学习数学知识有一种重要的方法,就是将遇到的新问题转化成我们已经学过的、已经能解决的旧问题而解决,这就是转化归纳的数学思想。

  4. 拓展延伸:通过对一元二次方程解法的归纳,学生发现解一元二次方程的基本思想是“降次”,由此可以拓展:解高次方程的基本思想就是“降次”,降高次为一次,那么解多元方程的基本思想就是“消元”,这样学生就会理解以前学习的二元一次方程组和三元一次方程组的解法都采用的是代入消元法和加减消元法了。为学生以后学习多元高次方程的解法打下良好的基础。

  5. 巩固练习:通过前面的练习和讲解,学生对一元二次方程的解法有了新的认识,这时应该趁热打铁,再出示几道习题让学生练习。

 

 

初三数学一模学情质量分析篇4

  一、投影

  1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

  2.平行投影:由平行光线形成的投影是平行投影。(光源特别远)

  3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影

  4.正投影:投影线垂直于投影面产生的投影叫做正投影。物体正投影的形状、大小与它相对于投影面的位置有关。

  5.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。当物体的某个面顶斜于投影面时,这个面的正投影变小。当物体的某个面垂直于投影面时,这个面的正投影成为一条直线。

  二、三视图

  1.三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。三视图就是主视图、俯视图、左视图的总称。另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

  2.主视图:在正面内得到的由前向后观察物体的视图。

  3.俯视图:在水平面内得到的由上向下观察物体的视图。

  4.左视图:在侧面内得到的由左向右观察物体的视图。

  5.三个视图的位置关系:

  ①主视图在上、俯视图在下、左视图在右;

  ②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。

  ③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。

  6.画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。

初三数学一模学情质量分析篇5

  二次函数

  1、定义:形如y=ax2+bx+c(a≠0,a、b、c是常数)的函数叫二次函数。

  2、二次函数的分类:

  ①y=ax2:顶点坐标:原点;对称轴:y轴;

  ②y=ax2+c:顶点坐标:(0、c);对称轴:y轴;

  ③y=a(x-h)2:顶点坐标:(h、0);对称轴:直线x=h;

  ④y=a(x-h)2+k:顶点坐标:(h、k);对称轴:直线x=h;

  ⑤y=ax2+bx+c:顶点坐标:(-b/2a,4ac-b2/4a);对称轴:直线x=-b/2a

  3、a、b、c符号的判定:a:开口方向向上→a>0;开口方向向下→a<0。

  b:与a左同右异,对称轴在y轴左侧,a、b同号;对称轴在y轴右侧,a、b异号。

  C:交与y轴正半轴,c>0;交与y轴负半轴,c<0

  b2-4ac:与x轴交点的个数,△>0→两个交点,△<0→无交点,△=0→一个交点。

  3、平移规律:“正左负右”“正上负下”。

  前提:配方成y=a(x-h)2+k的形式。

  4、待定系数法确定函数关系式:

  ①顶点在原点选y=ax2;

  ②顶点在y轴选y=ax2+c;

  ③通过坐标原点选y=ax2+bx;

  ④知道顶点在x轴上选y=a(x-h)2;

  ⑤知道顶点坐标选y=a(x-h)2+k;

  ⑥知道三点的坐标选y=ax2+bx+c。

  5、其他应用:求与x轴的交点→解一元二次方程;与y轴交点为(0、c)。

  6、对称规律:

  ①两抛物线关于x轴对称:a、b、c都变为其相反数。

  ②两抛物线关于y轴对称:a、c不变,b变为其相反数。

  7、实际问题:利润=销售额-总进价-其他费用,利润=(售价-进价)*销售量-其他费用。

初三数学一模学情质量分析篇6

  因式分解法

  (一)运用公式法:

  我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

  a2-b2=(a+b)(a-b)

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

  (二)平方差公式

  1.平方差公式

  (1)式子:a2-b2=(a+b)(a-b)

  (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

  (三)因式分解

  1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

  2.因式分解,必须进行到每一个多项式因式不能再分解为止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

  把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

  上面两个公式叫完全平方公式。

  (2)完全平方式的形式和特点

  ①项数:三项

  ②有两项是两个数的的平方和,这两项的符号相同。

  ③有一项是这两个数的积的两倍。

  (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

  (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

  (五)分组分解法

  我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

  如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  =(m+n)(a+b).

  这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

初三数学一模学情质量分析篇7

  教学目标

  1.知识与技能

  学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.

  2.过程与方法

  通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.

  3.情感态度与价值观

  通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.

  教学重点和难点

  1.重点

  通过对事件发生的频率的分析来估计事件发生的概率.

  2.难点

  大量重复试验得到频率的稳定值的分析.

  教具准备

  多媒体及题卡

  教学方法

  教师引导---学生自学---小组互动---当堂检测

  教学流程

  流程一 复习导入

  1.什么是频率?怎样计算频率?

  2.创设情景:

  国家在明年将继续实施山川秀美工程,各地将大力开展植树造林活动.为此林业部要考查幼树在一定条件下的移植成活率,应采用什么具体做法?(学生回答,师点评板书课题)

  流程二 学生自学

  1.出示自学指导,引导学生自学.

  (1)阅读教材P157.158的相关内容,完成表25-5

  (2)思考:在实验时为了使实验结果更接近现实情况,需要注意些什么问题?

  2.同桌交流,对照结果

  3.学生发表见解,相互评判

  4.小组讨论:在进行移植试验时,移植的总数是越多越好还是越少越好?

  5. 出示自学指导,引导学生自学.

  (1)同桌合作完成表25-6.

  (2)根据表中数据填空:

  这批柑橘损坏的概率是______,则完好柑橘的概率是_______,如果某水果公司以1元/千克的成本进了20000千克柑橘,则这批柑橘中完好柑橘的质量是________,若公司希望这些柑橘能够获利9000元,那么售价应定为_______元/千克比较合适.

  6.小组长检查完成情况,组织本组成员交流,力争人人弄懂.

  7.讨论:如果你是柑橘销售商,在整个销售过程中应注意些什么?

  8.学生发表见解, 相互评判.

  9.教师点评.

  流程三 总结反思 拓展升华

  提出问题:本节课你学到了什么?

  结合学生的答案进行归纳(补充学生未说到的):

  一般地,当试验的可能结果有很多且各种可能结果发生的可能性相等时, 可以用P(A)=m/n的方式得出概率.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率,即在同样条件下,大量重复试验所得到的随机事件发生的频率的稳定值来估计这个事件发生的概率.

  流程四 课堂检测

  (一)出示检测题,学生独立完成.

  1.经过大量试验统计,香樟树在我市的移植的成活率未95%.

  (1)吉河镇在新村建设中栽了4000株香樟树,则成活的香樟树大约是________株.

  (2)双龙镇在新村建设中要栽活2850株香樟树,需购幼树______株.

  2.一个口袋中放有20个球,其中红球6个,白球和黑球个若干个,每个球出了颜色外没有任何区别.

  (1)小王通过大量反复实验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在1/4左右,请你估计袋中黑球的个数.

  (2)若小王取出的第一个是白球,将它放在桌上,从袋中余下的球中在再任意取一个球,取出红球的概率是多少?

  3.某射击运动员在同一条件下练习射击,结果如下表所示:

  射击次数n102050100200500

  击中靶心次数m8194492178452

  击中靶心频率m/n

  (1)计算表中击中靶心的各个频率并填入表中.

  (2)这个运动员射击一次,击中靶心的概率约是_____.

  (二)给出答案,学生互查.

  作业设计

  1.设计一个统计池塘鱼的数量的方案.

  2.课本P162第3题P163第5题.

初三数学一模学情质量分析篇8

  只有当全体居民都参加管理工作时,才能彻底进行反官僚主义的斗争,才能完全战胜官僚主义。下面是课件网小编为您推荐初三数学教案设计:《一元二次方程的分式方程》。

  一、教学目标

  1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.

  2.通过本节课的教学,向学生渗透“转化”的数学思想方法;

  3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.

  二、重点·难点·疑点及解决办法

  1.教学重点:可化为一元二次方程的分式方程的解法.

  2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.

  3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.

  4.解决办法:

  (l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.

  (2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.

  (3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0.

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?

  (2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

  (3)解方程,并由此方程说明解方程过程中产生增根的原因.

  通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同.

  在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.

  在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.

  2.例题讲解

  例1 解方程.

  分析 对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正.

  解:两边都乘以,得

  去括号,得

  整理,得

  解这个方程,得

  检验:把代入,所以是原方程的根.

  ∴ 原方程的根是.

  虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学

  生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另

  外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解

  分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.

  例2 解方程

  分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是

  正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所

  以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.

  解:方程两边都乘以,约去分母,得

  整理后,得

  解这个方程,得

  检验:把代入,它不等于0,所以是原方程的根,把

  代入它等于0,所以是增根.

  ∴ 原方程的根是

  师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.

 

 

初三数学一模学情质量分析篇9

  正确的道路是这样:吸取你的前辈所做的一切,然后再往前走。下面是课件网小编为您推荐初三数学教案设计:《因式分解的简单应用》。

  一、教学目的

  (一)、 教学目标

  1、 会运用因式分解进行简单的多项式除法。

  2、 会运用因式分解解简单的方程。

  (二)、 教学重点与难点

  教学重点:

  因式分解在多项式除法和解方程两方面的应用。 教学难点:应用因式分解解方程涉及较多的推理过程。

  二、 教学过程

  (一) 引入新课

  1、 知识回顾

  (1) 因式分解的几种方法:

  ①提取公因式法: ma+mb=m(a+b)

  ②应用平方差公式: – = (a+b)(a-b)

  ③应用完全平方公式:a ±2ab+b =(a±b)

  (2) 课前热身:

  ①分解因式: (x +4) y - 16x y

  (二) 师生互动,

  讲授新课

  1、运用因式分解进行多项式除法

  例1 计算:

  (1) (2ab -8a b) ÷(4a-b)

  (2)(4x -9) ÷(3-2x)

  解:(1) (2ab -8a b)÷(4a-b) =-2ab(4a-b) ÷(4a-b) =-2ab (2) (4x -9) ÷(3-2x) =(2x+3)(2x-3) ÷[-(2x-3)] =-(2x+3) =-2x-3 一个小问题 : 这里的x能等于3/2吗 ?为什么? 想一想:那么(4x -9) ÷(3-2x) 呢?

  练习:课本P162——课内练习1

  2、 合作学习 想一想:如果已知 ( )×( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)

  事实上,若A×B=0 ,则有下面的结论:

  (1)A和B同时都为零,即A=0,且B=0

  (2)A和B中有一个为零,即A=0,或B=0 试一试:你能运用上面的结论解方程(2x+1)(3x-2)=0 吗?

  3、 运用因式分解解简单的方程

  例2 解下列方程:

  (1) 2x +x=0 (2) (2x-1) =(x+2)

  解:x(x+1)=0 解:(2x-1) -(x+2) =0

  则x=0,或2x+1=0 (3x+1)(x-3)=0

  ∴原方程的根是x1=0,x2= 则3x+1=0,或x-3=0

  ∴原方程的根是x1= ,x2=3

  注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2 等

  练习:课本P162——课内练习2 做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?

  教师总结:运用因式分解解方程的基本步骤

  (1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;

  (2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!

  4、知识延伸

  解方程:(x +4) -16x =0 解:将原方程左边分解因式,得 (x +4) -(4x) =0 (x +4+4x)(x +4-4x)=0 (x +4x+4)(x -4x+4)=0 (x+2) (x-2) =0 接着继续解方程,

  5、 练一练

  ①已知 a、b、c为三角形的三边,试判断 a -2ab+b -c 大于零?小于零?等于零? 解: a -2ab+b -c =(a-b) -c =(a-b+c)(a-b-c)

  ∵ a、b、c为三角形的三边 ∴ a+c ﹥b a﹤b+c

  ∴ a-b+c﹥0 a-b-c ﹤0 即:(a-b+c)(a-b-c) ﹤0 ,因此 a -2ab+b -c 小于零。

  6、 挑战极限

  ①已知:x=2004,求∣4x -4x+3 ∣ -4 ∣ x +2x+2 ∣ +13x+6的值。

  解: ∵4x - 4x+3= (4x -4x+1)+2 = (2x-1) +2 >0 x +2x+2 = (x +2x+1)+1 = (x+1) +1>0

  ∴ ∣4x -4x+3 ∣ -4 ∣ x +2x+2 ∣ +13x+6 = 4x - 4x+3 -4(x +2x+2 ) +13x+6 = 4x - 4x+3 -4x -8x -8+13x+6 = x+1

  即:原式= x+1=2004+1=2005

  (三)梳理知识,总结收获

 

 

初三数学一模学情质量分析篇10

  旋转

  1、旋转的三要素:旋转中心,旋转方向,旋转角。

  2、旋转的性质:①对应点到旋转中心的距离相等,②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等。

  关键:找好对应线段、对应角。

  3、中心对称:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称。

  4、中心对称的性质:①关于中心对称的两个图形,对应点所连线段都经过对称中心,而且被对称中心所平分。②关于中心对称的两个图形是全等形。

  5、中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

  6、对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数,②关于y轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都互为相反数。

  1、确定圆的条件:圆心→位置,半径→大小。

  2、和圆有关的概念:弦---直径,弧—半圆、优弧、劣弧,圆心角,圆周角,弦心距。

  3、圆的对称性:圆既是轴对称图形,又是中心对称图形。

  4、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

  推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

  5、圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,弦的弦心距相等。

  引申:在这四组量中,只要有一组量对应相等,其余各组量都相等。

  6、圆周角定理:①圆周角等于同弧所对的圆心角的一半,

  ②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;相等的圆周角所对的弧相等,

  ③半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

  7、内心和外心:①内心是三角形内角平分线的交点,它到三角形三边的距离相等。

  ②外心是三角形三边垂直平分线的交点,它到三角形三个顶点的距离相等。

  8、直线和圆的位置关系:相交→d

  9、切线的判定:“有点连圆心”→证垂直。“无点做垂线”→证d=r。

  切线的性质:圆的切线垂直于经过切点的半径。

  10、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

  11、圆内接四边形的性质:圆内接四边形的对角互补,每一个外角等于它的内对角。

  12、圆外切四边形的性质:圆外切四边形的对边之和相等。

  13、圆和圆的位置关系:外离→d>R+r.外切→d=R+r.相交→R-r

  14、正多边形和圆:半径→外接圆的半径,中心角→每一边所对的圆心角,边心距→中心到一边的距离。

  15、弧长和扇形面积:L=n∏R/180.S扇形=n∏R2/360.

  16、圆锥的侧面积和全面积:圆锥的.母线长=扇形的半径,圆锥底面圆周长=扇形弧长,圆锥的侧面积=扇形面积,圆锥的全面积=扇形面积+底面圆面积。

 

 

初三数学一模学情质量分析篇11

  在学习中,在劳动中,在科学中,在为人民的忘我服务中,你可以找到自己的幸福。下面是课件网小编为您推荐初三数学教案设计:《用公式解一元二次方程》。

  一、教学目标:

  知识与技能目标:

  1.使学生了解一元二次方程及整式方程的意义;

  2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

  过程与方法目标:

  1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;

  2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

  情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。

  教学重、难点与关键:

  重点:一元二次方程的意义及一般形式.

  难点:正确识别一般式中的“项”及“系数”。

  教辅工具:

  二、教学程序设计:

  问题情景

  1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.

  2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

  教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

  板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

  学生看投影并思考问题

  通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

  探究新知

  1.复习提问

  (1)什么叫做方程?曾学过哪些方程?

  (2)什么叫做一元一次方程?“元”和“次”的含义?

  (3)什么叫做分式方程?

  2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

  引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.

  整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

  一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

  3.练习:指出下列方程,哪些是一元二次方程?

  (1)x(5x-2)=x(x+1)+4x2;

  (2)7x2+6=2x(3x+1);

  (3)(4)6x2=x;

  (5)2x2=5y;

  (6)-x2=0

  4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.

  一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.

  一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.

  5.例1 把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

  教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.

  讨论后回答

  学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,

  练习1:教材P.5中1,2.

  练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:.(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

  教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.

  要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.

  小结提高

  (四)总结、扩展

  引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

  1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.

  2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.

  3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.

  学生讨论回答

  布置作业

  1.教材P.6 练习2.

  2.思考题:

  1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

  2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

  反思

 

 

初三数学一模学情质量分析篇12

  初三总复习是重要的教学阶段,是学生再学习的过程,也是全面提高学生文化素质,发展学生思维能力,培养学生分析解决问题能力的“收获季节”,是学生继续学习和参加工作的准备阶段。

  本学期是我第一次担任初三数学教学工作,经验尚浅,开始对于重难点、易错点及中考方向可以说毫无头绪。为不辜负校领导及前辈们的信任,我丝毫不敢怠慢,认真学习,积极请教,努力适应新时期教学工作的要求,从各方面严格要求自己,结合学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划、有组织、有效率地开展。为使今后的工作取得更大的进步,现对本学期教学工作做出总结,希望能发扬优点,克服不足,以促进今后教学工作更上一层楼。

  一、总复习工作要面向全体学生具体做法是:

  ㈠抓住学生心理,营造良好的教与学环境

  高考竞争的残酷,带来中考形势的严峻。由此带来的各种压力,使学生的“厌学”情绪比以往任何时候都强。不管优生和学困生,他们的学习都是被动型的。而学生是学习的主体,主体能动性没有调动起来,我们教师的工作怎样努力也没用,这就迫使我们去研究学生的心理,找出适合学生心理特征的教法。

  优生有较好的思维习惯,上课前我先把问题布置给他们,让他们自已先研究,提高他们自己解决问题的能力,上课时则采用讨论式教学方式,让他们舒展自己的见解,然后再加以归纳总结,并进行深化、类比和提高,从高、严、难三个方面要求他们;中等生是一个大的群体,在我们班是学习的主流,上课时我以他们为主,力求在课堂上消化所有的知识点,作业和练习题也以基础题为主,强化训练,普遍提高。对于差生,我本着提高一个算一个的心理,用爱心从思想上感化他们,用耐心从学习上帮助他们,在课堂上编出让这部分学生能够完成的题目,力求使他们每节课有事可做,每节课有收获,调动他们学习积极性。

  数学是一门比较抽象的学科,要维持学生的学习兴趣,必须重视与学生的情感沟通。比如给学生及时的辅导;给注意力不集中的学生及时的提醒;给有好的解法的学生及时表扬;给失去信心的学生及时的心理安慰;给学有余力的学生各种能力的培养和发挥潜能的机会。只有教师与学生有充分足够的情感交流,才能在教学中在一种愉悦、竞争、合作的环境下完成。

  ㈡注重学生解题中的错误分析

  在总复习中,学生在解题中出现错误是不可避免,针对错误进行系统分析是非常重要的,通过错误分析可以发现教学中的不足,从而采取措施进行补救。错误从一个特定角度揭示了学生掌握知识的过程,是学生在学习中对所学知识不断尝试的结果,教师认真总结,可以成为学生知识宝库中的重要组成部分,使学生领略解决问题中的探索、调试过程,这对学生能力的培养会产生有益影响。事实证明,练是实践,评是升华,只讲不评,练习往往走过场。

  ㈢关心学习上有困难的学生

  对学习有困难的学生特别予以关心,反复采取措施,激发他们学习数学的兴趣,指导他们改进学习方法,帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,成为一名合格的初中毕业生。

  首先,经常找他们促膝谈心,把教师的爱倾注给学生,教师热心、体贴、耐心的帮助,学生会从心理体会到师生之间真挚情感,从而激发他们的学习信心。

  其次,在课堂教学中,特别在题目的选择上要有梯度,符合他们的认知水平,逐步使他们学习质量有所提高。

  最后,在班内开展学习中的互相帮助活动,创设一个良好的复习情境,同时,有计划、有针对性地做好课外辅导工作。

  二、加强对教材的研究,营造课堂教学高效益。

  实施素质教育的主渠道是课堂教学,大面积提高教学质量的关键是每节课的高效益。中考要取胜,必须从初一开始抓起,打好基础很重要。学校给我们的教学时间与别的学科一样,时间紧,任务重,要做到“精讲”,对教师来讲,要求是非常高的。我们注意引导学生对概念、定理、公式、规律的消化;注意针对学生的知识缺陷和疑难问题作重点讲述;注意新旧知识、新题旧题的对比,把复杂抽象的问题作连贯解决;注意解题方法的延伸,摸索解决的规律;注意一题多解的研究和条件多变的问题的对付方法;注意富有思考性的新问题,与学生一起探索研究。

  三、增强上课技能,提高教学质量,做到线索清晰,层次分明,言简意赅,深入浅出。

  在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。现在很多学生反映喜欢上数学课了。

  四、虚心请教其他老师。

  在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足,征求他们的意见,改进工作。

  五、做好数学技能的再学习,全面培养学生素质。

  为此,在数学复习中,特别在学生练习中要做到下面几个方面:

  第一,正确性。要求学生在解题过程中遵循正确思维规律和形式,在运算、推理、作图中和所得结论中都要准确无误。

  第二、速度。注重解题速度。

  六、工作中存在的问题。

  1、教材挖掘不深入。

  2、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

  3、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导。

  4、差生转化力度不够。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数,导致了教学中的盲目性。

  5、教学反思不够。

  七、今后努力的方向。

  1、加强学习,学习新课标下新的教学思想。

  2、学习新课标,挖掘教材,进一步把握知识点和考点。

  3、多听课,学习同科目教师先进的教学方法的教学理念。

  4、加强转差培优力度。

  5、加强教学反思,加大教学投入。

初三数学一模学情质量分析篇13

  1.比较法

  通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

  比较法要注意:

  (1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

  (2)找联系与区别,这是比较的实质。

  (3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

  (4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

  (5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

  2.公式法

  运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。但一定要让孩子对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

  3.逻辑法

  逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

  4.逆向思维法

  逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

  5.分类法

  根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

  分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

初三数学一模学情质量分析篇14

  1、第一轮复习的目的是要“过三关”:

  (1)过记忆关。必须做到记牢记准所有的概念、公式、定理等,没有准确无误的记忆,就不可能有好的结果。特别是选择题,要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把教材中的概念整理出来,列出各单元的复习提纲。通过读一读、抄一抄、记一记等方法加深印象,对容易混淆的概念要彻底搞清、不留后患。

  (2)过基本方法关。如,待定系数法求二次函数解析式,配方法,换元法等,在复习时应进行强化训练。不要把大量的时间放在解偏题难题上。偏题难题有着优势的一面,提高学生的解题技巧,增加多种解题思路,却往往偏离了要求。偏难题让学生没有自信,思维是越走越偏,远离教材知识点往往是浪费时间,收效不高。

  (3)过基本技能关。如:基本计算能力,统计分析能力,识图能力。

  2、措施:

  在中考复习中,现在的资料可以说扑天盖地,很多教师,经常互相询问用什么资料好。根据多年经验,其实中考复习资料虽然很重要,但并不是重要到用某一种就成功,另一种就失败的程度。只要是最新的资料,除了编排体例不同,内容上都是大同小异。其实,我们应该根据自己的复习模式,复习习惯选择便于操作的资料,选编排体例应该重于选择资料的内容,而不是通过资料来压题、猜宝。因为资料是死的,用他的人才是活的。一定要针对自己,针对学生情况来选择自己的资料。同时,也应考虑到其它学科所用资料,尽量避免重复。

  (1)复习时教师要认真研究教材,摸清初中数学内容的脉络,开展基础知识系统复习。复习要立足于课本,从教科书中寻找中考题的“影子”。尽管近年来中考数学许多新题型,但所占分值比例较大的仍然是传统的基本问题。许多试题材于教科书,试题的构成是在教科书中的例题、练习题、习题的基础上通过类比、加工改造、加强条件或减弱条件、延伸或扩展而成的,所以在复习的第一阶段,应以新课程标准为依据,以教科书为蓝本进行基础知识复习。

  (2)教师要通过典型的例、习题讲解让学生掌握方法,对例、习题能举一反三,触类旁通,变条件、变结论、变图形、变式子、变表达方式等。

  (3)要定期检测,及时反馈。练习要有针对性的、典型性、层次性不能盲目的加大练习量。要定期检查学生完成的作业。教师对于作业、练习、测验中的"问题,应采用集中讲授和个别辅导相结合,因材施教,全面提高复习效率.

  3、第一轮复习应该注意的几个问题

  (1)必须扎扎实实地夯实基础。中考试题基础分占总分比重大,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

  (2)中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。

  (3)不搞题海战术,精讲精练,举一反三、触类旁通。“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。而是有针对性的、典型性、层次性、切中要害的强化练习。做同一题型的题目不应多,而应题型广泛。题目要循序渐进,从基础题到开放性试题都要有所了解。在平常的学习中,要时常总结题型、解题方法和易错点,这些总结会成为复习的第一手材料,对应试有很大帮助。

  (4)定期检查学生完成的作业,及时反馈。教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等手办法进行反馈、矫正和强化,有利于大面积提高教学质量。

  (5)实际出发,面向全体学生,因材施教,即分层次开展教学工作,全面提高复习效率。课堂复习教学实行“低起点、多归纳、快反馈”的方法。

  (6)注重思想教育,断激发他们学好数学的自信心,并创造条件,让学困生体验成功。

推荐访问:质量 数学一 分析 中考数学一模质量分析 初中数学一模考试质量分析 初三数学一模成绩分析 高三数学一模质量分析 九年级一模考试数学质量分析 初三数学学生质量分析与反思 初三模考数学质量分析 九年级一模数学质量分析 初三一模数学成绩分析总结与反思 初三一模质量分析美篇

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

Copyright©2012-2024 百纳范文网版权所有 备案号:鲁ICP备12014506号-1